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Chapter 1
Induction

1.1 Mathematical Induction

1.1.1 Introduction

Consider the following problems:

. e . 1
1. Prove that the sum of firat positive integers |sn(n27+).

2. Prove thai?® — n is divisible by 3 for alln € N.

3. Prove that the number of subsets ofraalement set i&", wheren
is any positive integep 1.

4. Suppose that a bus route has infinitely many stations. Uibestops
at the first station. Suppose that, if the bus stops at a stakomg its
route, then it stops at the next station. Show that the byss stoall
stations.

5. Prove that: < 2" for all positive integers:.

If one wants to check the validity of all these statementsutilpositive
integers, what should be done? The aim of this chapter isttodace
the student to the technique of Induction and use it to solvarity of
problems. For solving the above problems the proofs usingpenaatical
induction have two parts. First we prove that the statentetrue forn =
1. Next we assume tha®(n) holds for a positive integer and use this
information to show thaP’(n + 1) is true. i.e. ifP(1) andVr (P(r) =
P(r+1)) are true for the domain of positive integers, thenP(n) is true.
We shall now see an interesting example to illustrate thulsrtigue.
Consider that there is an infinite ladder, and we want to knbwether we
can reach every step on this ladder under the two given g¢onslit
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a) We can reach the first rung of the ladder.

b) If we can reach a particular rung of the ladder, then we eaatr the
next rung.

Is it possible to show that we can reach every rung?

By (a), we know that we can reach the first rung of the ladderrddeer,
because we can reach the first rung, using (b) we can also tteaskcond
rung. Now making use of (b) again, because we can reach tbadeeng,
we can also reach the third rung. Using similar argument,amereach the
fourth, fifth, sixth rung and so on. For example, after 50 usded), we
know that we can reach thg® rung. But can we conclude that we are
able to reach every rung of this infinite ladder? The answgess We can
verify this using mathematical induction.

1.1.2 Principle of Mathematical Induction
A proof using mathematical induction has two parts:

e A base step where we show that1) is true;

e An inductive step where we show that for all positive integerif
P(r) is true, thenP(r + 1) is true.

Principle of Mathematical Induction : To prove thatP(n) is true for all
positive integers whereP(n) is a propositional function, we follow a two
step procedure:

BASE STEP We verify thatP(1) is true.

INDUCTIVE STEP We show that the conditional statement

P(r) — P(r + 1) is true for all positive integers.

The assumption tha®(r) is true is called thénductive hypothesis

Once both the above steps are completed, we have showR thats true
for all positive integers.

Remark 1.1 Sometimes a statement has to be proved for all positive in-

tegersn > nyg. In this case the base step involves verifying tRét,) is
true.

We shall use mathematical induction to solve all the abowblpms.
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1.

lllustrative Examples

. o . 1
The sum of first: positive integers |sn(7127+).

Solution: Let P(n) be the proposition that the sum of the first
positive integers isi(n + 1)/2. We must show thaP(1) is true
and that the conditional statemeR{(k) = P(k + 1) is true for
kE=1,2,3,...

BASE STEP P(1) is true, becausé =

2
INDUCTIVE STEP For the inductive hypothesis we assume that
P(k) holds for an arbitrary positive integér. That is, we assume
that

I1+1)

k(k+1
1424+ +k = (T) (1)
Under this assumption, it must be shown thtk + 1) is true,

namely, that

_ (b +1)(k+2)

1424 +k+(k+1) = 5

is also true.

When we add: + 1 to both sides of the equation (1) we get,
k(k+1

1424 +k+(k+1) = %4-@4—1)
k(k+1)+2(k+1)
2

(k+1)(k+2)
—

Since we have completed both, the BASE step and the indsttye
we have shown tha®(n) is true for all positive integers.

. Prove that for every positive integer n® — n is divisible by 3.

Solution: Let P(n) be the proposition that for every positive integer
n, n® — n is divisible by 3. We must show tha®(1) is true and
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that the conditional statemeiit(k) = P(k + 1) is true fork =
1,2,3,...

BASE STEP P(1) is true, becaus#® — 1 = 0 is divisible by 3.
INDUCTIVE STEP For the inductive hypothesis we assume that
P(k) holds for an arbitrary positive integér. That is, we assume
that,

For every positive integer k, k% — k is divisible by 3. 2

Under this assumption, it must be shown titk + 1) is true,
namely, that

3[(k+1)° — (k+1)]
is also true.

k+1)°—(k+1) = E+3k>+3k+1-k—1
= K —k+ 3k 43k
= K —k+3(k*+k).

Using (2) we know thak?3 — & is divisible by 3 for every positive in-
tegerk. Moreover3(k? + k) is also a multiple of 3 for every positive
integerk. Thusk® — k + 3(k? + k) is divisible by 3.

Since we have completed both, the base step and the indsttipe
we have shown tha®(n) is true for all positive integers.

. Prove that for every positive integer the number of subsets of an

n-element set ig".

Solution: Let P(n) be the proposition that for every positive integer
n, the number of subsets of arelement set i2". We must show
that P(1) is true and that the conditional statemétk) = P(k+1)

is true fork =1,2,3,...

Let S, = {a1,aq,...,a,} be aset containing elements.

BASE STEP P(1) is true since the sef; has only two subsets viz.

¢ and{a,}.

INDUCTIVE STEP For the inductive hypothesis we assume that
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P(k) holds for an arbitrary positive integér. That is, we assume
that, for every positive intege,

The number of subsets of a k element set is 2. 3)

Under this assumption, it must be shown tfdk + 1) is true, i.e.
we shall prove that the number of subsets ¢f & 1)-element set is
2k’+1.

ConsiderSy1 = {a1,aq,...,ax, ap+1} be a set containing + 1
elements. The subsets 8f, either contairu;, 1 or do not contain
it. The subsets not containing, . ; are precisely the subsets 8f.
Using (3), we get that this number2§. The subsets not containing
ax+1 are precisely the subsets 8f U {ax1} . Again using (3) we
get that this number i2*. Thus the total number of subsets%f, |
equals2k 4+ 2F = 2F(1 1) = 2F+1,

Since we have completed both, the base step and the indstgpe
we have shown tha®(n) is true for all positive integers.

. There are infinitely many stations on a train route. Thim tstops

at the first station. Suppose that if the train stops at aostathen it
stops at the next station. Show that the train stops at dibsta
Solution: Let P(n) be the proposition that for every positive integer
n, the train stops at the® station. We must show thd(1) is true
and that the conditional statemeR{(k) = P(k + 1) is true for
k=1,2,3,...

BASE STEP P(1) is true since it is given that the train stops at the
first station.

INDUCTIVE STEP For the inductive hypothesis we assume that
P(k) holds for an arbitrary positive integér That is, we assume
that, for every positive intege,

The train stops at the k'™ station. (4)

Under this assumption, it must be shown tfdk + 1) is true, i.e.
we shall prove that the train stops at ffie+ 1) station.
It is known that if the train stops at a station, then it stofpha next
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station. Thus using (4) and the given information, if theéntrstops
at thek'" station then it stops at thé + 1)*" station.

Since we have completed both, the base step and the indst¢ipe
we have shown thaP(n) is true for all positive integers.

5. Show that, < 2™ for all positive integers..
Solution: Let P(n) be the proposition that for every positive integer
n,n < 2". We must show thaP(1) is true and that the conditional
statement’(k) = P(k + 1) istrue fork = 1,2,3,....
BASE STEP P(1) is true, becausé < 2.
INDUCTIVE STEP For the inductive hypothesis we assume that
P(k) holds for an arbitrary positive integér. That is, we assume
that,

For every positive integer k, k < 2. 5)

Under this assumption, it must be shown ti#tk + 1) is true,
namely, that

(k/’-’— 1) < 2k+1

is also true. We note thatt! = 2% + 2% Using (5), we get that
2k > k. Thus

2k 4ok S k4 k>k41.

Thus we have shown thét + 1) < 25*! for all positive integers:.
Since we have completed both, the base step and the indgtgpe
we have shown tha®(n) is true for all positive integers.

1.2 Strong Induction

In the earlier section we have studied Mathematical Indactind used it to
solve a variety of problems. In this section we will introduemother form
of mathematical induction, called strong induction whielm often be used
when we cannot prove a result using mathematical induc@amsider the
following examples:
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1. Show that ifn is an integer greater than 1, thercan be written as a
product of primes.

2. At the beginning Hari can run either one mile or two mileEhe
can always run two more miles, once he has run a specified mumbe
of miles, then prove that he can rummiles, wheren is any natural
number.

3. Suppose that a chocolate bar consista efjuares of chocolates as
usual arranged in a rectangular pattern. The bar can berbedéeg
the vertical or horizontal line separating the squaresusssg that
only one cut along either the horizontal or vertical cut cammade at
a time, show that the number of breaks you must successivakg m
to break the bar inte separate squaressis— 1.

You should try to solve each of these problems using the Firsh of
Mathematical induction that has been studied in the easketion and
analyze the difficulties encountered in proving the statgme

1.2.1 Statement of Strong Induction

Aim: To prove thatP(n) is true for all positive integers, whereP(n) is
a propositional function. We have to perform two steps tapithe propo-
sition.

Base Step:We begin by proving thaP(1) is true.

Inductive Step: Next we show that the conditional statemeRi(1) A
P2)N---NP(k)] = P(k+ 1) is true for all positive integera.

1. Show that ifn is an integer greater than 1, thercan be written as a
product of primes.
Solution: P(n) is a proposition that can be written as a product of
primes.
BASE STEP: P(2) is true since 2 itself is a prime.
INDUCTIVE STEP : For the inductive hypothesis we assume that
P(k) holds for all positive integerg with 2 < j < k. That is,
we assume that, for every positive integewherej < k, j can be
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written as a product of primes. We have to prove tRgk + 1) is
true.

To prove that'k + 1) can be written as a product of primes.

Case 1: Suppose+ 1 is itself a prime, then we are through.
Case 2: Supposk + 1 is composite, therk + 1 can be written
as a product of two integers andv such thatk + 1 = uwv with
2 <wu,v < (k+ 1). By inductive hypothesis andv can be written
as a product of primes and henket 1 is written as a product of
primes. The factorization of + 1 will contain the primes in the
factorization ofu andv.

. At the beginning Hari can run either one mile or two mileshe

can always run two more miles, once he has run a specified mumbe
of miles, then prove that he can rummiles, wheren is any natural
number.

Solution: We will show that Hari can run any number of miles using
the method of strong induction.

BASE STEP: P(1) is true since Hari can run one mile at the begin-
ning.

INDUCTIVE STEP : The inductive hypothesis implies that Hari can
travel j miles wherel < j < k. Assuming the inductive hypothesis
we want to show that if Hari can reach each of the finstiles where

1 < j < k then Hari can reach thg: + 1)th mile. We also know
that Hari can reach two miles. Fér > 2, we wish to prove that
P(k+1) is true. By inductive hypothesis Hari can reach ugte 1
miles. Now Hari can travel two miles from the destinationttha

has already reached and hence he can téavel miles.

Thus we have proved that when Hari can run one mile or two miles
and when he can reach all of the fikstniles then he can reach the
(k + 1)t mile.

. Suppose that a chocolate bar consists efjuares of chocolates as

usual arranged in a rectangular pattern. The bar can berbedérg
the vertical or horizontal line separating the squares.uéssg that
only one cut along either the horizontal or vertical cut camiade at
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a time, show that the number of breaks you must successivakg m
to break the bar inta separate squaressis— 1.

Solution: Let P(k) be the proposition that at mokt— 1 steps are
required to break a chocolate bar consisting pieces.

BASE STEP. P(1) is true since we need not do anything if the
chocolate bar consists of just one piece. i.e. 0 cuts arereztju
INDUCTIVE STEP : Now we shall assume thdt(k) is true for

1 <k < (n-—1). We have to prove thaP(n) = n — 1. You may
break the chocolate bar consisting of two pieces into twogseof
sizek; and ko such thatt; + k2 = n. By the inductive hypothesis
P(k1) = k1 — 1landP(ks) = ko — 1. Thus the bar consisting of
pieces has been broként (k1 — 1) + (k2 — 1) = n — 1 times.

The Principle of Mathematical Induction and Strong Indoictare a very
useful method of proof. The validity of both, the PrincipfeMathematical
Induction and Strong Induction follows from a fundamentéban of the
set of natural numbers known as the Well Ordering Propertiglwimde-
pendently can be used to prove many useful results espeicidlie theory
of numbers.
We now state the two principles.
(i) Well Ordering Principle : Any non-empty subset of non-negative in-
tegers has a smallest element.

In other words, ifS is a non-empty subset of non-negative integers then
there is ans € S such thats < a for everya in S.

(i) Principle of Mathematical Induction : If a subsetS of positive inte-
gers contains 1, and containst 1 whenever it contains, thenS contains
all the positive integers.

(iii) Strong Form of Induction : If a subsetS of positive integers contains
1, and ifn is a positive integer such that2,...,n € S thenn + 1 also
belongs taS. i.e. S contains all the positive integers.

Remark 1.2 Note that the Well Ordering Principle is not true for the set
of integers.
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1.2.2 Exercises

1.

10.

11.

12.

13.

Prove that for every positive integer
12423+...+nn+1)=n(n+1)(n+2)/3.

. Prove that for every positive integer

LU 4221+, +nnl=(n+1) -1
Prove tha|(n? + n), wheneven is a positive integer.
Prove tha|(n? + 2n), wheneven is a positive integer.

Prove that? — 1 is divisible by 8, whenevern is an odd positive
integer.

Prove tha|[4™ + 15n — 1], whenevem is a positive integer.

. Prove that a set with elements has(n — 1)/2 subsets containing

exactly two elements wheneveris an integer greater than or equal
to 2.

. Suppose tha#l and B are square matrices with the property that

AB = BA. Show thatAB™ = B" A for every positive integen.

Prove that1l + z)" > 1 + nxz, wherez > —1,2 # 0, andn =
2,3,....

Show thatl + nv/27—1 < 2" for all positive integers, > 2.

Show thak? < 2" for all positive integers, > 5.

Prove that if4,, Ao, ..., A, and %, By, .. s B,, are sets such that
A;CBjforj=1,2,...,nthen| J 4; C | ] B;.

Formulate and prove a similar r]e:slult for i]ﬁ:ttlersection of set

Show that every positive integeican be written as a sum of distinct
powers of two.
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Z_2 for all integersa and b. We use the Strong version of Mathematical

Induction: LetP(n) denote a property that holds for integer n. Suppose

14. Ajigsaw puzzle is put together by successively joinireges that fit
together into blocks. A move is made each time a piece is attdad
block, or when two blocks are joined. Prove that no matter timv
moves are carried out, exactly— 1 moves are required to assemble
a puzzle withn pieces.

15. Find the amounts of money that can be formed using jussaufi2
rupees and coins &frupees.

16. Showthatifiy,as,...,a, aren distinct real numbers, exactly— 1
multiplications are used to compute the product of thesambers,
no matter how parentheses are inserted into their product.

17. Suppose you begin with a pile nfstones and split this pile into
piles of one stone each by successively splitting a pileafest into
two smaller piles. Each time you split a pile you multiply thember
of stones in each of the two smaller piles you form, so thdteke
piles haver and s stones in them, respectively, you computte
Show that no matter how you split the piles, the sum of the yrtsd
computed at each step equals: — 1)/2.

Appendix
V2 is irrational.

We need to show thay/2 =+ % for all integersa andb. That is,2 #
2

that P(ny) is true; and for allc > ng, P(m) is true for allm with ny <
m < k implies P(k + 1) is true. ThenP(n) is true for alln > ny.

all integersb. Suppose that #

9 —

: 1
In our proof here we will takeyy, = 1, for we know that2 # = for

a

§7
Then(n+1)? = 2b% so that(n+1)? is even and hence-+ 1

for all a, wherel < a < n. Suppose

(n 4 1)2
2
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b2
(@)
the induction hypothesis sinée< n + 1. S02 # (n + 1)?/b%, and hence
the statement holds fer+ 1. By Strong Induction, the statement holds for
2

is even, say: + 1 = 2a’. Thenb? = 2a/?, or2 = a contradiction to

all n. That is,2 # Z_2 for all integersa andb. Hencey/2 is not rational.



Chapter 2
Divisibility of Integers

2.1 Divisibility of Integers

In this section, we see some elementary properties of irgeigany of the
proofs depend on two principles (i) Well Ordering Princifi® Principle
of Mathematical Induction.

Definition 2.1 An integerb is said to be divisible by a non-zero integer
if there is an integer: such thab = ax, and we then write|b. In caseb is
not divisible bya we writea { b. The propertyz|b may also be expressed
by saying thaté dividesd’ or ‘ a is a divisor oft’ or ‘b is a multiple ofa’.

Note that7 divides14 as14 = 7 x 2. But 7 does not dividel3. We may
write this as7|14 but 7 { 13.

Theorem 2.1 (i) If a|bthenalbe for any integere.
(73) If a|b andb|c thenalc.

(¢49) If a|bandalc thena|bx + cy for any integerse andy.
(tv) If alb, b # 0, then|a| < |b).
(v) If a|b andb|a thena = +b.

(vi) If m # 0 thena|bif and only if ma|mb.
Proof.

(i) If a|lbthenb = aq, whereq is an integer. Hencé¢ = a(qc) for any
integerc. Hencea|be.

(i) If a|bandb|cthenb = aq andc = b, whereq, ¢ are integers. Thus,
¢ = (aq)q1 = a(qq1). Hencecla.

13
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(7i7) If alb andalc thenb = aq,c = aq1,q,q1 € Z. Hence,bx + cy =
a(qr + q1y). Hencea|bx + cy.

(tv) If alb, b # 0, thenb = aq,q # 0. Hence,|b| = |ag| = |al|q|. As
q #0,|q] > 1, hencela| < |b|.

(v) If alb andb|a then|a| < |b| and|b| < |a|. Hence,a = +b.

(vi) If alb thenb = aq. Supposem # 0 thenmb = (ma)q. Hence,
ma|mb. Converselyma|mb thenmb = magq. Since,m # 0, we get
b = aq, that is,a|b.

Theorem 2.2 (Division Algorithm) Given integers: andb with a # 0,
there exist unique integegsandr such that

b=qga+r0<r <]lal

If a 1 b thenr satisfies the stronger inequality< r < |a].

Proof. Consider,S = {b — ak|b —ak > 0, k € Z}. Clearly,b + |ab| € S.
Hence,S is non-empty. By well ordering principle§ has a least element,
sayb—aq =r.If r > |a|then0 < r—la| < randr—|a| € S, a
contradiction.

Next we prove the uniqueness @aindr. Suppose = aq; + r1 and
alsob = aga +rowith 0 < 71 < |a], 0 < ro < |a|. If 71 # ro, let
r1 < re. Then0 < ro —ry < ry < |al. Now, e — r1 = a(q1 — az). Thus
al(rg—r1). Asrg—ry > 0 (v) of the theorem 1 implies thd| < (ro—11),

a contradiction. Hence, = r1 and sogy = ¢.

Example 2.1 Show that the square of any integer is of the fotfnor
8k + 1.

Solution. By division algorithm (take: = 2), any integeb is representable
as2q or2q + 1. If b = 2¢, then andh? = 4¢? i.e. b? is of the form4k. If
b=2q+1,thent? = 4¢> + 4¢ + 1 = 4q(q + 1) + 1. Sinceq(q + 1) is
divisible by 2, we get thai? is of the form8k + 1.

Example 2.2 Show that the square of any integer is of the fayinor
3k +1.
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Solution. By division algorithm (take: = 3), any integeb is representable
as3qor3q & 1. If b = 3¢, then andb? = 942 i.e. b? is of the form9k. If
b=3¢+1,thent? =9¢> +6g +1 =3k + 1.

Example 2.3 Find all integers: such that? + 1 is divisible byn + 1.
Solution. Letn be an integer such that+ 1|n? + 1. Note that
n+1|(n+1)(n—1)i.e.n+1n?—1.Hencen +1|(n? +1) — (n? - 1)
i.e.n+ 1|2. Hence,n + 1 = +1,+2. Henceyn = —3,—-2,0, 1.

2.2 Greatest Common Divisor

Definition 2.2 An integerd is called a common divisor af andb in case
d|a andd|b. If atleast one ofi andb is not equal to 0, the greatest among
their common divisors is called ttgreatest common divisorof a andb
and is denoted bya, b).

In other words, a positive integeris greatest common divisor afandb
if and only if the following two conditions are satisfied: (j} andg|b and
(i) if d|a andd|b thend|g.

Note thatl,2, 5,10 are common divisors a0 and50 and 10 is the
greatest common divisor @) and50.

Definition 2.3 Two integersa andb are said to be relatively prime (co-
prime) if (a,b) = 1.

For example, 10 and 21 are relatively prime integers. Anydamsecutive
integers are relatively prime.

Theorem 2.3 (Bezout’s Theorem)If g = (a,b), then there exist integers
xo andyg such thaly = axg + byo.

Proof. Consider,S = {az + by|z,y € Z, ax + by > 0 }. S is non-empty
asa® + b? € S. By well ordering principle,S has a smallest element, say
axo + byo = g. If dla andd|b thend|axo + byo i.e. d|g. Supposey 1 a then
a=gq+r 0<r<g. Hence,

r=a—gq=a(l —qxo)+b(—qyo) andr € S.
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But g is the smallest element &f, a contradiction. Hencej|a. Similarly
g|b. Hence,g can be written agz( + byo.

Theorem 2.4 (The Euclidean algorithm) Given integer$ andc > 0, we
make a repeated application of the division algorithm t@ivba series of
equations

b = cq+r, 0<r <ec,

c = rnqg+r,  0<ry<nrg,
ri—2 = Tj-1¢j—1+7Tj, 0< i < Tj-1,
’I“j,1 = quj.

The greatest common divisgb, c) of b andc is r;, the last non-zero re-
mainder in the division process.

Moreover, if (b,c) = bxg + cyo then the values ofy andyy can be
obtained by eliminating;_1, ..., 72, 71 from the set of equations.

Remark 2.1 1. We note that there is no loss of generality in assuming

thatc is positive for(b, ¢) = (b, —c) = (=b,¢) = (=b, —c).

2. Note that the values afy; andyg are not unique. For examplé,=
—1(2) + 1(3) and1 = 2(2) — 3.

Example 2.4 Find ged of 704 and407. Also findzq, yo such that
(704,407) = 704z + 407yo.

Solution. We have

704 = 407 + 297 (1)
407 = 297+ 110 @)
297 = 2(110) + 77 ©)
110 = 77+33 )
77 = 2(33)+11 (5)
33 = 3(11). (6)
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The last nonzero remainder is 11, her{¢64,407) = 11. Now to find
xo, Yo such thatll = 704z¢ + 407yo, we write (5)11 = 77 — 2(33).
Substituting for33 from (4),

11 =77 — 2(110 — 77) = 3(77) — 2(110).
Substituting for 77 from (3),
11 = 3(297 — 2(110)) — 2(110) = 3(297) — 8(110).
Substituting for 110 from (2),
11 = 3(297) — 8(407 — 297) = 11(297) — 8(407).
Substituting for 297 from (1),
11 = 11(704 — 407) — 8(407) = 11(704) — 19(407)

so thatxy = 11,y = —19. We can takery = 11 + 407k andyy =
—19 — 704k, k € Z. Note that there are many possible valuesifgrand

Yo-

.21 4 . . .
Example 2.5 Prove that the fractlonl% is irreducible for every nat-
n
ural numbem.
. C2In+4 . . .
Solution. We want to show that the fractlo?m is irreducible for

n +
every natural number, that is, we should show th&1n+4, 14n+3) = 1
for every natural numbets. Now,

2In+4 = 1ldn+3+7n+1
ldn+3 = 2(Tn+1)+1
m+1 = 1(Tn+1)

Hence, by Euclidean algorithnf@1n+4, 14n+3) = 1. Hence, the fraction
2In+4

14n + 3

is irreducible for every natural number
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Definition 2.4 Let a, b be non-zero integers. An integes is called a
common multiple ofz andb in casea|m andb|m. The least among of the
positive common multiples is called theast common multipleof a and
b and is denoted ba, b].

In other words, a positive integeéiis least common multiple af andb if
and only if the following two conditions are satisfied: {j andb|l and (ii)
if a|m andb|m thenl|m.

Example 2.6 The sum of two positive integers is 52 and their l.c.m. is
168. Find the numbers.

Solution. Let the positive integers beandb anda < b. Letd = (a,b) SO
thata = dm, b = dn where(m,n) = 1. Thus ()a + b = d(m + n) =
52 = 4 x 13 and (ii) l.c.m. ofa,b = dmn = 168 = 4 x 2 x 7 x 3. But
((m + n)d, mnd) = d, since(m,n) = 1. Hence by (i) and (ii)d = 4. So
m +n = 13 andmn = 42, which givem = 6,n = 7. Hencea = dm =
24, b = dn = 28.

2.3 Primes

Definition 2.5 An integerp > 1 is called a prime number, or a prime, if it
has no divisor such thatl < d < p. If an integer is not a prime then it is
called a composite number.

Note that2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 are prime numbers, while
4, 6, 8, 15, 20 are composite humbers.

Theorem 2.5 (Euclid’s Lemma) If (a, m) = 1 andm/|ab thenm/|b.
Proof. Since(a,m) = 1, there exist integers, y such thatux + my = 1
Hence,abx + mby = b. Since,m|ab and m|m we getm|abx + mby.
Hence,m|b.

Corollary 2.1 If pis a prime ang|ab thenp|a or p|b.
Proof. If p|a then we are done. Otherwiget a. Hence(p,a) = 1. Since,
plab and(p,a) = 1, by Euclid’s lemma, we get thatb.
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Euclid’s lemma can also be generalised for the product iotegers. This
proof is based on Principle of Mathematical Induction. Icttn is on the
number of terms occurring in the product.

Corollary 2.2 If pis a prime such that|a;as - - - a,,, thenp divides at least
one factora; of the product.

Proof. If n = 2, thenp|a;as. Hence,pla; or plaz. Assume that the
result holds for the product of integers. Supposgla; - - - anan+1, then
pllay - - - an)an41. Hence, eitheplayas - - - a,, Or playy1. If play+1 then we
are done. Otherwisg)jaias - - - a,. Hence, by induction hypothesig|a;
for somei, 1 < i < n. Hence, by principle of mathematical induction, we
get the result.

Example 2.7 Show that, ifp is a prime and- is a positive integer such that
<r <pthenp{rl.

Solution. If p | r! then by Euclid’s lemmap | k& for somek,1 < k < p, a
contradiction. Hencey 1 r!.

Example 2.8 Show that, ifp is a prime therp| (?) for 0 < r < p.
p! o

EIPEk Hence,p! = (?)r!(p — r)!. Note

thatp|p! and as] < r < p-—1,p ¢t |rlandp t (p — r)!. Hence, using

Euclid's lemma , we gep|(?).

Solution. Note that(?) =

Example 2.9 Prove that ifp is a prime, then/p is an irrational number.

Solution. Supposg/p is a rational number, sa%, wherea, b are relatively
2

prime integers. Hence, = Z_Q' Thus,pb® = a?. Hencepla?. By Euclid’s

lemma,pla. Hence,p?|a®. Buta? = pb>. Hence,p|b>. Hence,p|b, a
contradiction. Hencey/p is an irrational number.

Remark 2.2 (Fundamental theorem of Arithmetic) Every positive inte-
ger greater tham can be expressed as product of primes in a unique way
except for the order of the prime factors.

Using principle of Mathematical induction (strong form)ewan prove
that every positive integer greater tharcan be expressed as product of
primes. The uniqueness of the factorization follows frontliels lemma.
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Notes

1. A numbern = p{'p3*...p¢" is a perfect square if and only if
each ofaq,as,...,a, is even. Ifn = pipy...p, (i.e. if each of
ai,as,...,a.is equal to 1) them is called a square-free integer.

2. If a, b are positive integers such thai = ¢* and(a,b) = 1, thena
andb are both perfeck-th powers.

Remark 2.3 There are infinitely many primes.

Example 2.10 Given any positive integet, show that there exist con-
secutive composite integers.
Proof. Consider the integers

m+D+2,(n+1)!+3,....,(n+ D! +n,(n+ 1)+ (n+1).

Every number of the sequence is a composite humber beéadsédes
(n+ 1)+ kif 2 <k < (n+1). Hence, we get consecutive composite
numbers.

Example 2.11If p is a prime greater thad then show thap + 1 and
4p 4 1 can not be primes simultaneously.

Solution. Sincep is a prime greater thah p is either of the typ8k + 1 or
3k+2.1f pisofthe type3k + 1then2p+1 =23k +1)+1=6k+3 =
3(2k + 1). Hence3|2p + 1 and2p + 1 can not be a prime. Similarly, i
is of the type3k + 2 then3 divides4p + 1 and it can not be a prime.

Exercise Set - 2.1

1. Prove that no integer in the sequence 11, 111, 1111s a perfect
square.

2. Show that the square of any integer is of the f@#ror 3k + 1.
3. Show that for any positive integet, (ma, mb) = m(a,b).

4. Show that ifd|a andd|b andd > 0 then(%, %) = y
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5.

10.

11.

12.

13.

14.

15.

Show that if(a, m) = (b,m) = 1, then(ab, m) = 1.

k K
fa=]]py", b=]]p] then show that
i=1 i=1

k k
(a’ b) _ Hp;mn(aiﬂi): [a’ b] _ sznax(ai,ﬂi)'
i=1 i=1

. If m > 0 then show that

[ma, mb] = mla,b] and|a, b](a, b) = |ab|.

Show thata, b) = (b,a) = (a, —b) = (a,b+ ax) for any integer.

By using Euclidean algorithm find tlged of (i) 7645 and 2872 and
(ii) 963 and 657. Also express thed as the linear combination of
the given numbers.

Find(a?" + 1,a*" + 1). Hence, show that there are infinitely many
primes. (Due to Polya.)

Leta, b, c be integers such thét, b) = 1, ¢ > 0. Prove that there is
an integerr such thata + bz, c) = 1.

Supposen, n are integers anth = n?—n. Then show thatn? —2m
is divisible by 24.

A printer numbers the pages of a book starting with 1 aed 8489
digits in all. How many pages does the book have?

p—1
. 1.
Letp > 3 be an odd prime. Show that the numeratoryof —is

k=1
divisible by p.

Prove that ifh > 4 thenn,n + 2, n + 4 can not all be primes.

22

16

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.
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If2 =p1 < p2 < ... < p, Wherep; are primes, show that the
numberpips - - - p, + 1, can never be a perfect square.

Prove that, it > 4, then the numbet! + 2! + 3! 4 - - - n!, is never
a square.

Thegcd of two positive integers is 81 and their I.c.m. is 5103. Find
the numbers.

Prove that there are infinitely many positive integessich thata
is a squarela is a cube anda is a fifth power.

If a, b are positive integers such that the numbgt + 2L is also
an integer, then prove thgtd(a,b) < va + b.

Prove that ip is a prime, theny/p is an irrational number, where
is an integer greater than or equal to 2.

Show that ifp and8p — 1 are primes theBp + 1 is composite.
If 2™ — 1is a prime, show that is a prime.

Find all integers: andy such that(x, y) = 8 and|z, y] = 64.

If (a,b) = [a, b] then show that = +b.

Show that ifr is an odd integer, thet6|n* + 4n? + 11.

Find all integers which leave remainder 1 when divided3bye-
mainder 2 when divided by 4, . , remainder 8 when divided by 10.
x is a solution if and only ifc + 2 is divisible by3, 4, ..., 10.

Show that an integer > 1 is a composite number if and only if it
has a prime divisod such thatl < /n.

Find theged of 3645 and2357. Also find xg, yo such that

(3645, 2357) = 3645x¢ + 2357yp.
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30. Find the given integers, b use the Euclidean algorithm to find the

gcd and express it as a linear combination of the given numbers.

(i) 143,227 (i) 306,657 (iii) 272,1479
(iv) 216,771  (v) 30031,16579 (Vi) 56, 72

(Vi) 119,272 (vii) 595,252  (ix) 1769, 2378
(X) 5291,4514  (xi) 7234, 3476

31. Find integers:, y, if they exist, such that

(i) 352 + 49y =3 (i) 352 + 49y = 21
(iii) 122 4+ 7y = 93 (iv) 918z + 534y = 424.

32. Prove that two integers and b are relatively prime if and only if
there exist integers andy, such that\ + by = 1.

2.4 Relations

We use the notion of relation in our everyday life quite oftEnr example,
Anil is a brother of Sunita or Gopal is a son of Govind. We usertbtion
of relation in Mathematics as well. For example, we say #atless than
3 or 5 is not equal tar or 3 divides6.

In this section, we define the notion of relation in the cont&hMath-
ematics. We discuss the notion of an ordered pair, cartgsiaauct and
relation. We also study various types of relations. Inteitf, an ordered
pair consists of two elements, sayandb, in which one of them, say,
is designated as the first element and the other as the selemndrg. An
ordered pair is denoted ki, b). Two ordered pairga,b) and (c, d) are
equal if and only ifa = ¢ andb = d. Thus,(2, 3) and(3, 2) are not equal.

Remark 2.4 An ordered paifa, b) can be defined rigorously by
(a,0) = {{a},{a,b}}.
From this definition, we can prove that

(a,b) = (¢,d) implies that a = c and b = d.
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Definition 2.6 Let A and B be nonempty sets. The cartesian product of
andB is defined as the set of all ordered pdirsy) wherezx is an element
of A andy is an element oB.

The cartesian product of and B is denoted byd x B. Thus,
Ax B={(x,y)|lx € A,y € B}.
If A={1,2,3}andB = {4,5} then
Ax B=1{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)}.

Definition 2.7 Let A and B be nonempty sets. A relatioR from A to B
is a subset oA x B. If (a,b) € R then we say that is related tab. If a
is related tab by a relationR then it is denoted by Rb. If R is a relation
defined fromA to A then we say thaR is a relation defined oA.

Thus, if R is a relation defined oA thenR is a subset ofi x A.

Examples

1. If A= {a,b,c} andB = {p, ¢} thenR = {(a,q), (b,p), (¢,p)} isa
relation. ButR, = {(a,p), (b,q), (¢,r)} is not a relation fromA to
B asR; is not a subset ofl x B.

2. LetA =7, B = Z. Arelation R; can be defined as
Ry ={(z,y)ly =z +1}.

3. A={a,b,c,d}, B = A. Define a relationk, on A by

R2 :{(0’7 b)? (b7 b)? (b7 a)? (C7 b)? (C7 c)’ (b7 6)7 (d7 a>7 (d7 d)? (a7 d)}'

Definition 2.8 A relation R defined on a setl is said to be a reflexive
relation if, for everyr € A, (z,z) € R.

In other words,R is a reflexive relation o if every element ofA is
related to itself, that isg Rx for everyz € A.
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Example 2.121f A = {1,2,3} andR = {(1,1),(2,2),(3,3)} is areflex-
ive relation but?; = {(1,1),(2,2), (1,3), (2, 3)} is not areflexive relation
as(3,3) € R;.

Definition 2.9 A relation R defined on a sefl is said to be a symmetric
relation if (x,y) € R implies that(y, z) € R.

In other words,R is a symmetric relation odl if a is related toh implies
thatb is related tas.

Example 2.131f A = {1,2,3} andR = {(1,2),(2,1),(3,3)} is a sym-
metric relation butk; = {(1,1),(2,2), (1, 3), (2, )} is not a symmetric
relation ag1,3) € R; but(3,1) ¢ R;.

Definition 2.10 A relation R on a setA is called a transitive relation if
(z,y) € Rand(y, z) € Rimplies(z, z) € R.

In other words, ifz is related tay andy is related taoz, thenz is related to
z. For example, ifA = {1, 2,3} then

R = {(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)} is a transitive relation but
Ry = {(1,1),(2,2),(1,2),(2,3)} is not a transitive relation ad,2) €
Ry, (2,3) € Ry bUt(l,?)) ¢ R;.

Definition 2.11 A relation R on a setA is said to be an equivalence rela-
tion if R is reflexive, symmetric and transitive relation.

In other words, a relatiof® on a setA is an equivalence relation if
1. Foreveryu € A, (a,a) € R.
2. If (a,b) € Rthen(b,a) € R.
3. If (a,b) € Rand(b,c) € Rthen(a,c) € R.

Example 2.14 1. If A={1,2,3} andR={(1,1),(2,2),(3,3)}. Then
R is a reflexive, symmetric and transitive relation. Hertés an
equivalence relation. But

Ry = {(13 1)a (272)3 (1a 2)7 (2’3)}
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is not a reflexive relation defined ohas(3,3) ¢ R; and hence itis
not an equivalence relation.

Consider,Ry = {(1,1),(2,2),(3,3),(1,2),(2,3)}. Ry is a reflex-
ive relation onA but it is not symmetric. Hence, it is not an equiva-
lence relation.

2. LetA ={1,2,3,4,5}. Define arelation? on A by 2Ry if and only
if x < y. Note that the relatiomR is neither reflexive nor symmetric.
If xRy andyRz thenz < y andy < z. This implies thatr < z, that
is, zRz. Hence,R is transitive.

3. LetA = {1,2,3,5,6,10, 15,30} and R be a relation defined oA
by a Rb if and only if a dividesb. Note thatR is reflexive as for every
a € A, a divides itself. Also6R30 as6 divides30. But 30 does not
divide 6. Hence,30 is not related t@®. Hence,R is not a symmetric
relation. It is easy to see thdt is a transitive relation. Hence the
relation R is reflexive and transitive but not a symmetric relation.

Definition 2.12 Let A be a nonempty set ard be an equivalence relation
defined onA. Fora € A, the equivalence class af denoted bya], is
defined as the set given By € A|x ~ a}.

Remark 2.5 Equivalence class af is also denoted by (a), cl(a) or by
a. We note that for every € A, a € [a] asa ~ a. Thus, every equivalence
class is nonempty. The set of all the equivalence classesristed by
A ~.

Lemma 2.1 Let A be a nonempty set ard be an equivalence relation de-
fined onA. Then, any two equivalence classes are either equal or thyutua
disjoint.
Proof. Leta,b € A. We have to prove thdu] = [b] or [a] N [b] = ¢.
Suppos€a] N [b] # ¢. Then, there is an element, saysuch thatc €
[a] N [b]. Hence,c ~ a andc ~ b. Since,~ is an equivalence relation, we
get by symmetry: ~ c. Also, by transitivity, we get. ~ b.

Supposeg € [a]. Hence,z ~ a. But, a ~ b. Hence, by transitivity,
we getz ~ b. This implies thata| C [b]. Similarly, we can prove that
[b] C [a]. Hence,[a] = [b].
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Definition 2.13 Let A be a nonempty set antl be a family of subsets of
A. S'is said to be a partition ofl if the following conditions are satisfied:

1. Every element of' is nonempty.
2. Intersection of two distinct elements 8fis an empty set.

3. Union of all the elements &f equalsA.

In other words, ifS = {Si} thenS is said to be a partition ofl if
Si # ¢ for everyk, S; N Sy, = ¢ wheneverj # k andUS;, = A.

Theorem 2.6 Let A be a nonempty set and be an equivalence relation
defined onA. ThenA/ ~ forms a partition ofA.

Proof. We note that by Lemma 2.1, any two equivalence classes &er eit
equal or disjoint. Also, for every € A, a € [a] asa ~ a. Hence, union of
all the equivalence classes equalsHence, A/ ~ forms a partition ofA.

Example 2.15Let S = {0,1,2,3,4,5,6,7}. Define a relation on S as
a r b if and only if the English spellings ai andb begin with the same
letter. Thus,2 is related to3 as spellings of botf2 and begin with T.
Hence,

ro= 10,0),(1,1),(2,2),(3,3), (4,4),(5,5), (6,6), (7,7),
(2,3),(3,2), (4,5), (5,4), (6,7), (7,6)}.

Note thatr is an equivalence relation. The equivalence classes aga giv

by [0] = {0}, [2] = {2,3},[6] = {6, 7}, [1] = {1} and[4] = {4,5}.

Example 2.16 Let R be a relation defined dA such that: Rb if and only if

5 divides(a —b). We note that.Ra for everya € Z asb dividesa —a = 0.
Hence,R is a reflexive relation. Also, i&Rb then5 divides(a—b). Hence,

5 divides (b — a), that is,bRa. This shows thaR is a symmetric relation.
Suppose:Rb andbRe then5 divides (a — b) and also(b — ¢). Hence,5
divides(a — b) + (b — ¢) = (a — ¢), that is,aRe. This implies thatr is

a transitive relation. Hence® is an equivalence relation. When we divide
any integer bys, all the possible remainders abel, 2, 3 or 4. Hence, we
get five equivalence classé8], [1], [2], [3] and[4].
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Exercise 2.2

1. Foreach of the following relatior’? defined orZ*, determine which

of the ordered pairs belong 1.

a) xRy if and only if z dividesy; (2, 3), (2,4), (2,8),(2,17)
b) zRy if and only if z < y; (2, 3),(3,2),(2,4), (5, 8)
c)zRyifand only ify = 2% (1,1),(2,3), (2,4), (2,6)

. Determine which of the following are reflexive, symmettiansitive

and equivalence relations on the get

(@) LetA =1{1,2,3,4,5,6}. Define a relationk? on A by
R={(@)|i-jl=2}.

(b) A = the set of all the lines in the planes. Define a relatidon
on A by [Rm if and only if [ is parallel tom.

(c) A = the set of all the lines in the planes. Define a relation
on A by [Rm if and only if [ is perpendicular ton.

(d) Supposed = {0,1,2,3} andR is a relation given by

R = {(O’ 0)7 (17 1)’ (272)? (3’ 3)’ (L 2)’ (Qa 1)7
(3,2),(2,3),(3,1),(1,3)}

(e) A = R. Define a relationR on A by xRy if and only if |
x—y|<T.

(f) Let R be the relation or% x Z given by (z,y)R(s,t) if and
only if < sandy < t.

(9) Let R be the relation or¥ x Z given by (z,y)R(s,t) if and
onlyifx+t=y+s.

(h) Let R be the relation or¥ x Z given by (z,y)R(s,t) if and
only if xt = ys.

(i) Let R be the relation onp(Z) given by ARB if and only if
ANB # ¢, A, B € p(Z).

() Let R be the relation on the set of integefggiven by xRy if
and only ifz andy share a common factor other than or
—1.
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(k) Let R be the relation or¥Z x Z given by (z,y)R(s,t) if and
onlyif z < sory < t.

3. Give one example of a relation for each of the following:
a) reflexive, symmetric but not transitive.
b) symmetric, transitive but not reflexive.
c) reflexive, transitive but not symmetric.
d) reflexive, neither symmetric nor transitive.
e) symmetric, neither reflexive nor transitive.
f) transitive but neither reflexive nor symmetric.
g) reflexive, symmetric and transitive.
h)neither reflexive nor symmetric nor transitive.

2.5 Congruences

A congruenceds a convenient statement about divisibility. It often make
it easier to discover proofs. The notion of congruence wasduced by
C. F. Gauss (1777-1855) in his famous book Disquisitioneth#eticae,
written at age 24. It gained ready acceptance as a fundahteoitéor the
study of number theory.

Definition 2.14 Letm be a non-zero integer. The integerandb are said
to be congruentnodulo m if and only if m|(a — b), and writtena = b
(mod m).

Since,(a — b) is divisible bym if and only if (a — b) is divisible by —m,
we will confine our attention to a positive modulus.

Theorem 2.7 Leta, b, ¢, d, z,y denote integers. Then,

1. a = b(mod m), b = a(mod m), and(a — b) = 0(mod m) are
equivalent statements.

2. If a = b(mod m) andb = ¢(mod m), thena = ¢(mod m).
3. If a = b(mod m) andc = d(mod m), then

ar +cy = br +dy (mod m).
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4. Ifa = b(mod m) andc = d(mod m), themc = bd (mod m).

5. If a = b(mod m) andd|m, thena = b(mod d).
Proof:

1. Supposer = b(mod m). Then, by definition,m|(a — b). Now,
m|(a — b) if and only if m|(b — a) if and only if m|(a — b) — 0.
Hence,a = b(mod m), b = a(mod m), anda — b = 0(mod m)
are equivalent statements.

2. Ifa =b(mod m) andb = ¢(mod m), thenm|(a—b) andm/|(a—c).
Hence,m|(a — ¢) i.e.a = ¢(mod m).

3. If a = b(mod m) andc = d(mod m), thenm|(a — b) and
m|(c — d). Hence,m|(a — b)z andm|(c — d)y. Hence,

m|(ax + cy) — (bx + dy) i. €. ax + cy = bx +dy (mod m).

4. m|(a —b) andm|(c —d) = m|lc- (a —b) +b- (¢ — d)]
= m|(ac — bd) = ac = bd (mod m).

5. If a = b(mod m) thenm|a — b. Butd|m, henced|a —bi.e.a =b
(mod m).

Remark 2.6 If we define a relatiorR on the set of integers hyRb if a is
congruent tad modulom, then by the above theorem, it follows thatis
an equivalence relation.

Theorem 2.8 Let f(x) denote a polynomial with integral coefficients. If
a = b(mod m), thenf(a) = f(b) (mod m).

Proof: Assume thaff (z) = ¢o+ c1x +- - - + ¢,2™, Wwheree;’s are integers.
Since,a = b(mod m), we geta® = b (mod m), ..., a" = b" (mod m).
Hence, for every, 0 < j < n, we getc;a’ = ¢;b’ (mod m). Hence,

zn:cjaj = zn:cjbj (mod m), thatisf(a) = f(b) (mod m).
j=0 7=0
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Theorem 2.9 Leta, b, x,y, m, mq, ..., m, be integers. Then,
1. axz = ay (mod m) if and only if x = y (mod L)
(a,m)

2. If ax = ay(mod m) and(a, m) = 1 thenz = y (mod m).

3. x =y(mod m;) fori =1,2,... rifand only if

x = y(mod [my,ma,...,m;]).
Proof.
1. If ax = ay (mod m) thenaz — ay = mq for some integeg. Hence,
we haveL(x —y) = Lq and thus——— |—a (x—y)
(a,m) (a,m) (a,m) (a,m) ’
But (ﬁ, (aTnm)) = 1. Hence, we get(a’Lm)Kx — ), that is,
m

Conversely, ifr = y (mod %) then—2~|(x — y), hence,

(a,m)

m|(a, m)(z — y). This implies thatn|a(xz — y), that is,

ar = ay (mod m).

2. If ax = ay(mod m) and(a,m) = 1 thenz = y(mod 7). But
(a,m) =1 hence we get = y (mod m).

3. If z = y(mod my) for i = 1,2,...,r thenm;|(z — y) for i =
1,...,r. Thatis,(x — y) is a common multiple ofny,...,m, and
thereforer = y (mod[my, ma, ..., m,]).

Conversely, ift = y (mod [mq,mo,...,m,]) then for
i=1,...,7, mi|[mi,...,m,]. Hencex = y (mod m;) for
i=1,2,...,r

Proposition 2.1 If b = ¢(mod m) then(b,m) = (¢, m).

Proof. Since,b = ¢(mod m) we getb = ¢ + gm. Hence,(c¢,m)|b and
hence,(c, m)|(b,m). Also, ¢ = b — gm implies that(b, m)|c and hence
(b,m)|(c,m). As both (b,m) and (¢, m) are positive, we gethb, m) =

(c,m).
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Example 2.17 Find the remainder whet8™ + 143 is divided by11.
Solution. We note thatl3 = 2(mod 11) and14 = 3(mod 11). Hence,
14% = 33 (mod 11), that is,

143 =5 (mod 11). (1)

Also, 2° = 32 = —1(mod 11). Hence,2™ = 1(mod 11). Since2? = 8
(mod 11), we get2™ = 8(mod 11). Thus,

13 =8 (mod 11). (2)

Adding the congruences (1) and (2), we get

137 4143 =8+ 5=2 (mod 11).
Hence,2 is the remainder wheh3™ + 143 is divided by11.

Example 2.18 Show that a number is divisible 3yif and only if the sum
of its digits is divisible by3.
Solution. Let n be a given number. can be written as

n:ng+10n1+‘~'+10knk,

where0 < ng,ng,...,n; < 9. Note thatl0 = 1(mod 3). Hence, for
every positive integem 10™ = 1(mod 3). Hencen = ng+n1+---+nyg
(mod 3). This implies that is divisible by3 if and only if the sum of its
digits is divisible by3.

Example 2.19 If p andq are primes such that= ¢+ 2, prove thap? + ¢7
is a multiple ofp + q.

Solution. We note that agp andg are primes such that = ¢ + 2, bothp
andq are odd primes. Hence,— 1 is even. Consider

PP+q" = p+e-a+¢"=(-9)" +¢" (modp+q)
= —¢"+¢"=¢"(1-¢*) (modp+q)

Now p + ¢ = 2¢ + 2 and2|q — 1. Hencep + ¢ = 2(¢ + 1) divides1 — ¢>.
Hencep? + ¢4 = 0(mod p + q), that is,p? 4 ¢? is a multiple ofp + q.
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Example 2.20 If a, b are integersp a prime, then show that
(a+b)P =d? + VP (mod p).

Solution. We note that

(@a+b)P = ap+<]17>ap—1b+---+(pfl)abp—lbwp

= a’ 4V (mod p)

as(¥),..., (pfl) are divisible byp.

2.6 Residue Classes

Let m be a positive integer and,b € Z. Definea ~ b if and only if

a = b(mod m). The first part of the Theorem 2.7 shows that this is a
symmetric relation, while the second part of Theorem 218 ted that it is

a transitive relation. Since, every non-zero integer disitl we get that

a = a(mod m), that is,a ~ a for all a € Z. Hence, this relation is a
reflexive relation. Since, this relation is reflexive symrizeaind transitive
relation, this is an equivalence relation.

If m = 2 then the equivalence relation gives us equivalence classe
with which we are familiar. The class 6fis the set of all even numbers
and the equivalence classlois the set of all odd numbers. More generally,
the equivalence class afconsists of alb + mk, wherek ranges over the
set of all integers. We denote the equivalence classesther by[a] or a.
and we call it congruence class @r residue class af. a is called as a
representative dz]. [a] can also be represented by mk. Observe that
if [o] = [c] thenb = mk + ¢ for some integek. Hence,m|b — c¢. When
m = 2, we have exactly two equivalence classgs$,and[1]. The [0] is
called as the set of all even numbers &hds called as the set of all odd
integers.

Given any integeb, by division algorithm, there exists unique integers
g andr such thath = mgq + r, where0 < r < m, thus[b] = [r]. So the
n classeq0], [1],...,[m — 1] give us all the congruence classes. Observe
that all these classes are distinct. Fofpjf= [c] where0 < c < b < m
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thenm|b — c¢. But0 < b — ¢ < m, a contradiction. (We have proved that
if alb,b # 0then|a| < |b].)

We shall now introduce two operatiorsand-, in Z,,. We definela] +
[b] = [a + b]. We must prove that this is a well defined operation, i.e., we
must prove that that the addition is independent of the sgmitative of the
equivalence class chosen. In other wordsqfif= [a'] and[b] = [¢] then
we must prove thala + b] = [’ + V']. If [a] = [a/] and [b] = [V], then
a = a/ (mod m) andb = b (mod m). Hence,a + b = a' + b (mod m).
But this means thgt.+b] = [a/ 4 b']. Hence+ is a well defined operation.
Similarly, we define as|a|[b] = [ab]. This is also a well defined operation.
We leave it as an exercise to the reader as it is exactly amasog

Note that

[a] +[b] = [a+0b]=[b+a]=[b]+ [a]
andla] - [)] = [ab] = [ba] = [b] - [a].
In other words, both these operations are commutative., Also
([a] +[0]) +[d] = la+b]+[c]=I[(a+b)+]
[a+ (b+ )] = [a] + ([6] + [c]).
Similarly, we can show thafa] - [0]) - [¢] = [a] - ([8] - [¢]). Also,
[a] +[0] = [a], [a] + [=a] = [0], and[a] - [1] = [a].

The addition and multiplication of residue classes canlaésshown by
so called multiplication tables. While illustrating the Htiplication tables,
we usex instead ofla]. For example, the addition and multiplication tables
of residue classes moducare given below.

+]0 1 2 3 45 01 2 3 45
0/0 1 2 3 4 5 0/0 00 0 0 O
111 2 3 4 5 0 110 1 2 3 4 5
212 3 45 01 210 2 4 0 2 4
313 45 01 2 3/0 30 3 0 3
414 5 0 1 2 3 410 4 2 0 4 2
515 0 1 2 3 4 5/0 5 4 3 2 1

Addition table for Zg Multiplication Table for

N
>
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Observe thatil = a for all the elements iZg. Also, 55 = 1. But there
does not exist any € Zg such thata = 1.

We also note that ifa] = [b] then(a, m) = (b, m). For if [a] = [b] then
b = mgq + a for some integey. Hence,if(a,m) = d thend|a,d|m and
alsod|b, i.e., (a,m)|(b,m). Similarly, (b, m)|(a, m). Since, both(a, m)
and(b, m) are positive, they are equal to each other. Hendg,,ifn) = 1
andb € [a] thenb andm are relatively prime to each other. In this case,
every element ofa] is relatively prime tan.

Definition 2.15 Let [¢] € Z,, be an equivalence class of [a] is called a
prime residue class modute if (a,m) = 1. The set of all prime residue
classes modula: is denoted byZy, .

Thus, Z}, = {]a]|(a,m) = 1}. This set is also denoted Wy,,. A
prime residue class is also called as a reduced residue class

We now give the multiplication table fdf; and forZ3. Recall that
Zy ={1,5} andZ = {1,3,5,7}.

|1 3 5 7
1 5 il1 3 5 7
111 5 3/13 1 7 5
515 1 515 7 1 3
717 5 3 1

Multiplication Table for Zg  Multiplication Table for Zg

Remark 2.7 The Euler’s¢ function is defined as the number of positive
integers less than or equaliteand relatively prime ten. Thus,¢(1) = 1,
¢(2) = 1. ¢(8) = 4 as1,3,5,7 are the exactly four integers less than or
equal to8 and relatively prime t&. If p is a prime, themy(p) = p — 1
and it can be easily seen thafp™) = p" — p"~ L. Euler's ¢ function has
many interesting properties. For example(sit,n) = 1, theng(mn) =

p(m)o(n).

Remark 2.8 (Euler’s theorem) Let a, m be relatively prime integers (i.e.
(a,m) = 1). Thena?™ = 1 (mod m).
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Following is an easy consequence of Euler’s theorem.

Remark 2.9 (Fermat's theorem) Let p be a prime and: be an integer.
Thena? = a (mod p).

Exercise Set - 2.3

1. Verify that([a] - [t]) - [¢] = [a] - ([t] - [c]). Also, [a] + [0] = [a], [a] +
[—a] = [0], andla] - [1] = [a].

2. Show that a number is divisible Wyif and only if the sum of its
digits is divisible by9.

3. Show that a number is divisible Byf and only if the number formed
by its tens digit and its units digit is divisible hly

4. Show thata + 1)? — a” — 1 is divisible byp. Also, show that ifp
dividesa? — a thenp divides(a + 1)? — a — 1.

5. Prove that for every positive integer
() 1™ + 8" — 3™ — 6™ is divisible by10.
(b) 2903™ — 803™ — 464™ + 261" is divisible by1897.

6. Prove that the expressio2s + 3y and9z + 5y are divisible by 17
for the same set of integral values:ofindy.

7. Find the remainder whet?” + 82 is divided by?7.



Chapter 3
Polynomials

3.1 Introduction

In this chapter we studR|z], the set of polynomials in one variable

with real coefficients. We define equality of polynomialsrazeolyno-

mial, degree of a nonzero polynomial. ThenRfiz] we define addition
and multiplication of polynomials and some propertiestegldo these op-
erations. We shall further discuss Remainder theorem acibiFfeorem
using Division Algorithm theorem.

3.2 Definitions and Remarks:

Definition 3.1 (Polynomial) An expression of the form
nz™ + ap_12" L+ 4+ a1z + ao,

whereq;’s are real numbers andis a non-negative integer is called a poly-
nomial overR in z and is denoted by(z). If p(z) = a,z" + a, 12" +
---+ajz+ag, thena;'s are called the coefficients of polynomijalz). The
set of all polynomials in one variablewith real coefficients is denoted by
R[z]. Similarly, the set of all polynomials in one variablewith complex
coefficients is denoted b |x].

Definition 3.2 (Equality of polynomials) Let p(z) and ¢(z) be polyno-
mials wherep(z) = ap,2” + ap_12" "' + -+ + ayx + ag, a; € R and
q(r) = bpx™ 4 by 1™ 4 - 4 bz + by, b; € R are said to be equal
if n=manda; =b;, fori =0,1,--- ,n

Definition 3.3 (Zero Polynomial) If all the coefficients of a polynomial
p(r) = apz™+ an_12" 1+ - - + a1z + ag are zero then it is called a zero
polynomial i.e.a; =0, for: =0,1,--- ,n.
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Definition 3.4 (Leading Coefficient)

Letp(z) = a,a"™ + ap_12"" ' + -+ + a1 + a¢ be a polynomial where
an # 0. Thena,, the coefficient ofc™ is called its leading coefficient and
n is called the degree of the non-zero polynomial, denotedey(z)..

Definition 3.5 (Monic Polynomial) A polynomial with leading coefficient
one is called a monic polynomial.

Some remarks and examples

1. A nonzero polynomial of zero degree is calledamstant polyno-
mial.

. A polynomial of degree one is callediaear polynomial.
. A polynomial of degree two is calledcuadratic polynomial.

. A zero polynomial has no degree (Convention henceforth).

a A W DN

. f(x) =14z — 2% + 2% is a monic polynomial of degree 3 R[]
since the coefficient of? is 1.

6. p(x) = 3z — 2 is a linear polynomial inRk[z] andq(z) = 7 is a
constant polynomial ifR[x].

7. g(x) = 0 is the zero polynomial ifR[z].

3.3 Addition and Multiplication
Definition 3.6 Let p(x) andg(x) be polynomials, where

p(z) = g+ ap 12" 4 Faiz+ap
() = bpx™ 4 by 1™ o £ bz + by,

Then, the addition of two polynomials is defined as

k—1

p(z) + q(z) = pa® + 12" L+ + o
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wherec; = a; +b;, fori =0,1,2,--- |k wherek = max {m,n}. and the
multiplication is defined as

m+n +

p(2)q(7) = cpina - 'Ckxk +--F+ar+co

wherec, = agbg + ap_1b1 + - - - + a1bg_1 + agby.

Example 3.1 Letp(z) = 2% — 2z — 2 andq(z) = 52% — = + 3.

(a) Findp(z) + ¢q(z), (b) Findp(z)q(),

(c) What is the degree of{x)q(z) ?

(d) Is the polynomial(x) monic? If not, what is the leading coefficient of
q(x)?

Solution : (a)

p(x)+q(x) = (2*—2—2)+ (52" —x+3)
5+’ —r—x—243=523+2>—2x+1.

(b) p(z)q(z) = (2? —2—2) (52> —x+3) = 2?(52® — 2 +3) — (53 -z +
3)—2(5x3 —x+3) = ba® — 23+ 322 -5zt + 2% — 32— 1023 + 22— 6 =
5% — bt — 1123 + 422 — 2 — 6. (c)deg(q(x)) = 3.

(d) Polynomialg () is not a monic polynomial since the leading coefficient
is 5.

Example 3.2 Let p(x), ¢g(z) € R[z]. Show that

deglp(z) + q(z)] <max{degp(z),degq(x)}.

Solution : Letdeg p(z) = m anddegq(z) = n. If p(x) + ¢(x) is a non
zero polynomial then there exist largéssuch thatu, + b, # 0. We show
thatk < max {m,n}.

Supposek > max{m,n} = k > mandk > n = b, = 0 and
ar = 0 = a; + by = 0, which is a contradiction. Hende< max {m,n}.

Example 3.3 Show thatdeg p(z)q(z) = deg p(x) + deg q(z).
Solution : Letp(x) = apz™ + -+ - + a1 + ap and
q(z) = bpa™ + -+ + byx + by. Then
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p(x)q(7) = Cpynx™™ + -+ + 1z + o, Where
cp = agbg + a1bg_1 + - - - arbg. Sincea,, # 0 andb,, # 0 = Cm4n =
Anbm # 0.

We show thatn + n is the highest power of in the expansion of

p(z)q(z). In other words ifc > m -+n, we must show that;, = 0. Clearly
ap, =01f k > nandb, =0if k > m.
Thusc; = apbg + a1bg—1 + - - ak—mbm + ak—me1bm—1 + - arbg =0
(Sincebk =by_1=-= bm+1 =0 andak_m = Qk—m+1 = " = a =
0if £ > m+n). Thus the highest power afin p(z)q(x) ism+n. Hence
deg p(z)q(z) = degp(x) + degq(x).

3.4 Divisibility in R[z]

Definition 3.7 Let p(z) € Rlz]. A nonzero polynomial(z) € Rix] is
said to be a divisor op(x) if there existsh(z) € R[z] such thatp(z) =
q(x)h(z) and write it asg(z)|[p(z).

If p(xz) # 0thenp(x) = 1 x p(x) = p(x)|p(z). Further, ifk # 0 then
p(x) = kgp(r) = klp(z).

Example 3.4 Let p(x) andq(z) be nonzero polynomials iR[x] such that
p(x)|q(x) andg(x)|p(x). Show that there exists # 0 such thatp(z) =
cq(x).

Solution : p(z)|q(x) andq(z)|p(x) = Tki(x) # 0, ka(xz) # 0 such that
q(x) = k1(z)p(z) andp(z) = kz(x)q(z) = q(z) = ki(z)ka(x)g(z) =
ki(2)ka(2) = 1 = degki(2)ka(2)] = 0

= degky(z) + degka(xz) = 0 = degki(z) = 0 anddegko(z) = 0.
Hence, k2 (x) is a constant polynomial sak,(z) = c¢. Hencep(z) =
ka(z)q(x) = cq().

Example 3.5 If p(z) andg(x) are nonzero polynomials iR[x] such that
p(z)|q(z) then show thatleg p(x) < degg(z).
Solution :p(x)|q(z) = Ih(x) € R[z] such thai(z) = p(x)h(z).
Now deg g(x) = deg[p(z)h(z)] = deg p(x) 4 degh(x) > degp(x)
= degp(x) < degq(z), sincedeg h(z) > 0.
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Example 3.6 If p(z), ¢(x), r(x) € R[z] with p(z) # 0. If p(z)|¢(z) and
p(x)|r(x) then form(z),n(x) € R[z], show that

p(x)[m(x)q(z) + n(z)r(z).

Solution: We are given thai(x)|q¢(x) andp(z)|r(z). Hence there exist
polynomialsk; (x), k2 (z) such thay(z) = p(x)ki(z), r(x) = p(z)ke(x).
Hence,

m(@)q(x) + n(@)r(x) = f@)(m(@)k (@) + n(@)ks(z) = f(@)k(z),
wherek(z) = m(x)ki(x) + n(x)kz(x). Thus

p(x)[m(x)q(z) + n(z)r(z).

Theorem 3.1 (Division Algorithm) Let f(z), g(x) € R[z] such thag(x)
is a non-zero polynomial. There exist unique polynomigls), r(z) €
R[z] such thatf(z) = g(x)q(x) + r(x) wherer(z) = 0 or degr(z) <
deg g(x).

Example 3.7 Let f(z) = 32° — 2® + 3z — 5 andg(z) = 2> + 7. Find
q(z),r(z) € Rlz] such thatf (z) = g(z)q(z) + r(z).

Solution : By using long division we get(z) = 32% — 22z andr(z) =
157z — 5. Hence

30° — 2 + 3z — 5 = (¢® + 7)(32® — 222) + (157z — 5).

Example 3.8 Let f(x) = 23+ z + 3 andg(z) = x + 3. Findg(z),r(x) €
R[z] such thatf (z) = g(x)q(z) + r(x).

Solution : By using long division we get(z) = 2? — 2 andr(x) = 9.
Hencer? +z + 3 = (x + 3)(2? — 2) + 9.

Definition 3.8 (Greatest Common divisor) Let p(x), ¢(x) be nonzero
polynomials inR[x]. A polynomiald(z) € R[x] is said to be a greatest
common divisor (g.c.d.) gf(x) andq(z) if

1. d(z)|p(z) andd(z)|q(x)
2. If e(x)|p(x) andc(x)|q(x) thene(x)|d(x)
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Greatest Common divisor of two polynomialéz) andg(x) is denoted by
(f(z), 9(x)) i.e.d(z) = (f(z),9(x)).
Remarks:

1. When we want to calculate a greatest common divigat)(of two
nonzero polynomials, we note that it is not unique.

If d(z) = (f(x),g(x)) then fora # 0, € R, ad(x) is also aged
of the given two nonzero polynomials. However, we can mgake
unique by choosingcd to be a monic polynomial.

2. If f(z), g(x) are two polynomials such thfitz)|g(x) andg(x)| f(z)
then f(z) = ag(z), wherea # 0. Then, we say thaf (z) andg(z)
are associates of each other.

3. If the ged of two nonzero polynomials is a nonzero constant real
numberk (say) then by above remark tlged is 1. (Choosex = %
in this case).

Definition 3.9 (Relatively prime polynomials) Letp(x), ¢(x) be two
non-zero polynomials iR [z]. p(z) andq(x) are said to be relatively prime

it (p(a), q(x)) = 1.

Theorem 3.2 (Existence of gcd)if p(z), ¢(x) are two nonzero polynomi-
als inR[x] then there exists a unique polynomifle) which is g.c.d. of
p(x) andg(x) and there exist polynomials:(x),n(z) € R[x] such that

d(x) = m(x)p(z) + n(z)q(z).

Theorem 3.3 (Euclidean Algorithm to find ged )

The procedure to compute thed of two nonzero polynomials ifR[z]
using division algorithm is calle&uclidean Algorithm. The Algorithm
is as below :

1. Let f(x), g(x) be nonzero polynomials iR[x]. By Division Algo-
rithm 3 ¢(z), r(x) € Rlz] such thatf(z) = g(x)q(z) + r(z) where
r(z) = 0ordeg r(x) < deg g(x).
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2. If r(z) = 0 then theged d(x) = (f(x),9(x)) = r(x). If r(z) # 0
then again apply Division Algorithm tg(z) andr(x) to getq; (=)
andry (z) such thaty(z) = r(z)q1(z) + r1(z) and furtherd(z) =
(f(z),9(x)) = (9(z),r(x)) as inZ.

3. Now, if 1 (z) # 0 then apply the previous step and continue this
process till we get zero remainder. This process stops becaiu
every step the degree of remainder decreases at least byTbee.
last nonzero remainder is the g.cdiz) of f(z) andg(z).

Example 3.9 Find the greatest common divisor ffz) = > +x +1 and
g(x) =x+ 1.
Solution : Dividing f(x) by g(x) we get:? + x4+ 1 = (z)(z + 1) + 1 i.e.
f(z) = xzg(x) + r(z) wherer(xz) = 1.

Again dividing g(z) by r(z) we getx + 1 = 1(z) + 1 and again
1=1(1) + 0. Thusd(z) = (f(x),g(x)) = 1 which implies thatf(x) and
g(x) are relatively prime.

Example 3.10 Find the greatest common divisor ffz) = 2* + 322 + 2
andg(z) = 2® — 22 + x — 1 € R[z].
Solution : Dividing f (x) by g(x) we get that,

f(z) = (x+1)g(z)+(32%+3) = q(z)g(x)+r(x) whereg(x) = z+1
andr(z) = 322 + 3.
In order to avoid fractions, we dividgg(z) by r(z) = 32? + 3 to get
39(z) = (z — 1)r(x) + 0.

So the last nonzero remainderrig) = 322 + 3. Thus the g.c.d. of
f(z)andg(z) isr(z) = 322 + 3.

Using the fact that g.c.d. of two polynomials is unique upisaxiates,
we conclude that(z) = (f(x),g(z)) = 2% + 1.

Example 3.11 Show thatf (z) = 2® — 222 + 3z — 7 andg(z) = 2% + 2
are relatively prime.

Solution : Dividing f (x) by g(x) we get that,

f(@) = (2 = 2)g(x) + (x = 3) = g(x)g(x) + r(z) (say).
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Dividing g(x) by r(x) we get,
g(x) = 22 +2=(z+3)(z —3) + 11 = ¢ (x)r(z) + r(z) (say).

Since the remainder is a nonzero constant it eventually tomhthaiged =
11. Using the fact thagced of two polynomials is unique up to associates,
we conclude thatf(z), g(x)) = 1.

Theorem 3.4 (Remainder Theorem)If f(z) € R[z] is divided by(z—«)
then the remainder i§(«).

Proof : By Division Algorithm there exist unique polynonsa}(z) and
r(z) such thatf (z) = (x — a)q(x) + r(z) wherer(xz) = 0 ordeg r(z) <
deg (x —a) =1 = deg r(x) = 0. Hencer(x) is a constant polynomial
sayr(z) = c¢. Thusf(z) = (x — a)q(x) + c¢. Now putz = « to get
f(la) = (o — a)g(a) +r = f(a) = r. Thus the remainder is= f(«).

Example 3.12 Use Remainder Theorem to compute the remainder when
f(z) = 2* — 323 — 722 — 2is divided byg(z) = = — 2.

Solution : Hergy(z) = 2z —a = x — 2 = a = 2. By Remainder Theorem
fla) = f(2) =2* - 3(2)3 — 7(2)? — 2 = —38 is the remainder.

Example 3.13 Find the value of,, if = + 2 is a factor ofz? — az + 6.
Solution : Divide f(z) = 2? — azx + 6 by g(z) = z + 2 by using long
division method to get quotient(z) = = — (a + 2) and remainder =
2a — 2. Butxz + 2 is factor ofz? — az + 6 = 0, so by Remainder Theorem,
r=2a—2=0=a=1.

Theorem 3.5 (Factor Theorem) (x — «) is a factor off (z) € R[z] if and
only if f(a) = 0.
Proof : Supposé¢ (a) = 0. By Remainder theorem

r(@) = fla) =0= f(z) = (z — a)q(z) = (r — @)

is a factor off (z).

Conversely suppose that— «) is a factor off (z). Hence, there exists
g(x) € R[z] such thatf (z) = (z — a)g(z). Thus, f(a) = (o — a)g(a) =
0. Hence the proof.



Polynomials 45

Example 3.14 Use Factor Theorem to determine whether) = = + 3 is

afactor off(z) = 32 — 4z + 2 or not.

Answer :g(z) = x —a = x4+ 3 = a = —3. We check whethef (a) = 0

ornot. f(a) = f(—3) = 3(=3)3 —4(-3) +2 = —31 + 14 = —67. Thus
f(a) = —67 # 0, so by factor theoreniz — o) = (« + 3) is not a factor
of f(z) = 323 — 4z + 2.

3.5 Roots of a Polynomial

We now obtain the relation between the roots and the coeftief the
polynomials.
Let f(z) = 2" + ap_12" 1 + -+ a12 + ag € Rlz] anday, as, - -+ ,
be the roots off (x) = 0. Then using factor theorem, we get

"+ ap_12" 4t artag = (v —ag) - (T — ap)

= " - (Z a)z" !+ (Z )z (1) (g ag..an).

Now comparing the coefficients we get the following :

1. Y «; = —a,—1 =i.e. sum of the roots.

2. Zaia]- = a,_o i.e. sum of the products of roots taken two at a
i<y
time.

3. Continuing this way, we gét-1)"ajas...ar, = ag i.e. product of
the roots.

Particular Cases :

1. If f(z) = 2% + bx + ¢ = 0 has 2 rootsy;, as (say).
Then we getf (z) = 22 + bz + ¢ = (v — a1)(x — a3)

2

=22 +br+c=[22 - (a1 + a2)r + aras).

Sowe getv; + ag = —bandajas = c.
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2. If f(x) = 2® + ba® + cx + d = 0 has 3 rootsy;, as, a3 (say) then
we getf(z) =2 +bx? +cx +d = (z — a1)(z — a2)(z — a3)

=23 — (o + ag + a3)2? + (a2 + aras + azas)r — ajasas.

So comparing we get; + as + a3 = —b, ajas +ajag+asag = ¢
anda1a2a3 = —d.

Example 3.15 Solve the equatiorf (z) = 2423 — 1422 — 63z +45 = 0
where one of the roots is double the other.
Solution : Leta, 2a, 3 be the roots off (x ) = 0 Then

a+2a+ 8= 24,aﬂ+a(2a)+6(2a) il , (@)(20)(B) = Thus
3a+ 8 = 5, 202 +3a5_——2 2g — 2
Substituted = 5 — 3a to get2a?® + 3a ({5 — 3a) = —2—81.

Simplifying we get8a —2a-3=0=a=3o0r—1.

If « = —3 theng = 23, then2a2ﬁ # -1
Thusa = % andg = —3 2 and hence the third root &y = 2

Hence the roots arg, %, -3

Example 3.16 Solve4z3 + 2022 — 232 4+ 6 = 0, two of its roots being
equal.
Solution : Let the roots ba, «, 5. Then,

a—i—a—i—B:—@,a-a—l—ﬁa—i—aﬂ:—@,aaﬁz§
4 4 2
i.e.2a+ 8= —5,a? +2aﬁ———aﬁ:%
Since = -5 —2a = o’ +2a(-5—-2a) = -2 = a=1 -
The third equatiom?8 = a?(—5 — 2a) = 2 is satisfied byx = § and
notbyo = =2 Thusa = £, 8 = —5 — 2a = —6. So the three roots are
3,306

Example 3.17 The cubic equatiofz? — 922 +12x 4+ A = 0 has two equal
roots. Find\ and the roots.
Solution : Let the roots be, «, 5. Then,

2a0+ B = 2,a + 2a3 = 6, aQB———

Since = 3 — 2a the equationy? + 20,3 = 6 becomesy?> —3a+2 =
O:>a:1,2.|fa:1:>B:g:>/\:—5. fa=2=p8=1= )=
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—4. Thus\ = —5 then the roots aré, 1, g and if A\ = —4 then the roots
are2,2, 1.

Example 3.18 Solvez? — 1322 + 15z + 189 = 0 having given that one
root exceeds the other by 2.

Solution : Let the roots be, 3,~. Then,a+ B+~ = 13, af+ vy +~ya =
15, afy = —189. Supposex =+ 2= (f+2)+ S +y=14d =~ =
11 — 25. Substitute value ofy anda = S + 2 in the second equation
af+ By +ya=15weget3p? —208—-7=0=B="7,—1

B =7= a=9andy = —3 satisfy the third equation5y = —189. But
B =—1= a =2 leads toy such thaiv3y # —189. Thus the three roots
are9,7, —3.

Example 3.19 Find the condition that the cubic® — pz? + gz —r = 0
has all roots equal.

Solution : Letthe roots be, o, . Then3a =p = o = £, a?+a’+a? =
g=a? =% =r=E81 =0 = ao® = & = r = B is the required
condition.

Example 3.20 Solvex? — 922 + 14z + 24 = 0, two of its roots being in
the ratio3 : 2.
Solution : Let3a, 2«, 8 be the three roots. Then,
Ja+2a+8=9=5a+8=9=5=9-5a
(3a)B + (22) B + (3a)(2a) = 14 = 5af + 6a? = 14
(3a)(20)(B) = —24 = o?B = —4
Substitute the value ¢f in second equation to get
5a(9 —5a) + 6% =14 = (190 —T)(a —2) =0 = a = 2, 15.
If « = & = B =28 butthena?s # —4. Thusa =2 = 3 = —1. Thus
the three roots aréo, 2a, 8 i.e. 6,4, —1.

Example 3.21 Solvez? — 622 + 3z + 10 = 0, the roots being in A.P.
Solution : Leta — d, a, a + d be the three roots. Then,
a—d+a+a+d=6=a=2.(a—d)a+(a—d)(a+d)+ala+d)=3.
=3a>—d*=3=12—d> =3 = d = +3. Thus the roots, — d, a,a +d
are—1,2,5.
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Example 3.22 Solve18z? + 8122 + 121z + 60 = 0 being given that one
root is half the sum of the other two.

Solution : Let the roots be, 8 andy ands = O‘T“ Thus the three roots
are in A.P and that we can assume that the three roots are. — d, 5 =
a,y=a+d a—d+a+a+d= —% =a= —%.

(a—d)a(a+d) = - = d =431 Thusthe roots are 2, -3, —2.

Example 3.23 Solvexz? + 223 — 1222 — 22 + 40 = 0 whose roots are in

A.P.

Solution : Let the roots be — 3d,a — d,a + d,a + 3d. Then,a — 3d +

a—d+a+d+a+3d=-2=a=-—
(a —3d)(a — d)(a+d)(a+ 3d) = 40 = (4d* — 9)(36d? + 71) = 0.

Since36d> + 71 # 0 we haveld? —9 = 0 = d = +3. Thus the four roots

area — 3d,a —d,a +d,a + 3di.e. =5, -2,1,4.

N[

Example 3.24 Solve27x3 4 4222 — 282 — 8 = 0 whose roots are in G.P.
Solution : Let?, a,ar be the three roots. The#,- a - ar = 28—7 Hence,
a3:2—87:>a:%and%—i—a—I—ar:—%:>3r2+10r+3:0:>7”:
—3,—% Thus the roots are 2, 2, —2.

Example 3.25 Solve6z® — 1122 — 3z + 2 = 0 whose roots are in H.P.

Solution : Leta, 3, v be the three roots in H.P. . Heneo]g,%, % arein A.P.

Thus,% =14 % = 2ay = aff + B. Further we havdap + 5v) +

Yo = —% = 2ay +ya = —% = Jay = —% = oy = —%. Moreover,

(aN)B=-2=-1p=-L=p=2Nowa+pB+y=L=a+y=

11 1

U_o9-_1

6 6

The equationgvy = —% anda + v = —% together give us
o = —3 andy = L. Thus the three roots, 3,y are—3, 2, 3.

Example 3.26 Find the sum of the squares of the roots of

2¢% — 823 4 622 — 3 = 0.

Solution : Leta, b, ¢, d be the four roots. Then,
a+b+c+d=4,ab+ ac+ ad+ bc+ bd + c¢d = 3 and

(a+b+c+d)?=a?+b>+c?+d?—2(ab+ ac+ ad + be + bd + cd)
= a? + b2+ +d® =4%-2(3) = 10.
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Theorem 3.6 (Fundamental Theorem of Algebra)Every non-constant
polynomial inC[z] has at least one root ifl.

Remark : If f(z) € Clz]is a non-constant then by Fundamental Theorem
of Algebra, 3 «; € C such thatf(a;) = 0. Thus by Factor theorem
(x — «y) is a factor of f(x) and we can writef (z) = (z — a1)g1 (),
whereg, () € C[z]. Now applying Fundamental Theorem of Algebra to
g1(z),3 ag € C such thay; (a2) = 0 and hencey; (z) = (x — a2)g2(z),

so thatf(z) = (z — a1)g1(z) = (z — a1)(z — az)gz(x). Continuing in
this way, we getf(z) = a(x — aq)(z — a3) - - - (r — ), Wherea is the
leading coefficient and afl;'s neednot be distinct.

Theorem 3.7 If f(z) € R[z] is a non-constant polynomial with a root
a + ib thena — ib is also a root off (x).

Proof : Letf(z) = apz" + ap_12" ' + -+ + a1z + ag, a; € R, a,, # 0,

n > 1. Leta = a + ib be the given root off (z), so thatf(a) = 0 =
ana” + ap_10" "t 4+ .- + aja + ag = 0. Taking conjugate on both the
sides we geti,,a” + a,_10" 1 +--- +aja+ay =0 = 0 = a,a™ +
ap_10" 1 + ... +@ra +ag = 0. Buta; € R impliesa; = a;, for i.
Thus we geta,a"” +a, 1@ '+ +a@+a=0= f(a)=0=
f(a—ib) = 0. Hencea — ib is root of f(x) = 0, as desired.

Corollary : Any odd degree polynomial with real coefficients has attleas
one real root.

Proof : Letf(x) € R[z] be of odd degree (say). By Fundamental theo-
rem of Algebra,f(x) has exactlyn roots. Pairing the complex roots with
their conjugates, we see that atleast one togay) must be conjugate of
itself (since degree of (x) is odd) i.e.c« = @ = « is real root off(x), as
desired.

3.6 Exercise

1. Letp(z) = 27 — 3z + 2 andq(x) = 27 + 4z + 3. Findp(z) + q(x),
p(z)q(x).
2. Letp(z) =142 — 22 andg(z) = = + 5. Findp(z)q(x).
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10.

11.

12.
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. Find the roots of the following equations :

(@ z* — 23 —922 — 11z —4=0.

(b) 23 -7z -6 =0.

(€) 23 — 622+ 11z — 6 = 0.

(d) 42* — 723 — 522 + T +4 = 0.

(e) (222 — 3z + 1)(22% + 5z + 1) = 922
(M (z+2)(z+3)(z +8)(z + 12) = 422

. If 22— ha — 21 = 0 and2? — 3hx + 35 = 0 (h > 0) have a common
root then show that = 4.

. Letn € Nand 2 + &L + -+ + a,, = 0, whereaq; € R, 0 <4 <
n. Define f(z) = 2o gnt! 4 Lgn 4 Sn-ly2 4 g,z Show that

n+1
f(0) = f(1).
. If p(z),q(z) € Rlz] such thap(z)|q(z) andg(x)|r(z). Show that
p(x)|r(z).
. Letp(z) = x — 2 andq(z) = 22 — 4 € R[z]. Show thatp(z)|q(x)
andg(z)|p()-
. Letp(z) andg¢(x) be nonzero polynomials iR[z]. Suppose there

existsc # 0 such thaip(z) = cq(z) then show thap(x)|q(z) and
q(z)|p(z). (Converse of Theorem 1)

. Letf(z) = 23 —22%+ 3z —7andg(r) = 2%+ 2. Findg(x), r(x) €
R[x] such thatf (x) = g(z)q(x) + r(z).

Letf(x) = 2% —8 andg(z) = 22 + 2z + 4. Findq(z), r(x) € Rz]
such thatf (z) = g(x)q(z) + r(x).

Use Factor Theorem to determine wheti@r) = = + 1 is a factor
of f(z) = 2 + 423 + 62 + 42 + 1 or not.

Use Factor Theorem to determine whetiar) = = — 2 is a factor
of f(z) = 23 + 22% — 3 or not.
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13. Use Factor Theorem to show that- 1 is a factor ofz* — 223 — 3.
14. Use Remainder Theorem to compute the remainder when

f(z) =2° + 2% + 23 + 2% + x + 1is divided byg(z) = z + 1.
15. Use Remainder Theorem to compute the remainder when
f(z) = 2% + x + 1is divided byg(z) = » — 1.
16. Find the value of, if 2 — 2 is a factor ofz* — 23 + az? + 8 = 0.
17. Find the greatest common divisor of the following polynals in
Riz]:
@) f(x) =2 — 322+ 22 — 6, g(z) = 23 — 22% — 22 — 3.
(b) f(z) =2* — 23 + 322 - 32, g(x) =23 — .
©) f(z)=23—1,g(x) =2 — 22 + 3.
18. Check whethef(z) = 2° —2*+23—2?+z—1andg(z) = 2> +a+1

19.

20.
21.

22.

23.
24.
25.
26.

are relatively prime iR[z].

Show thatf (), g(z)) = (z*+a3+222+2+1,23—-1) = 22 +2+1.

Further findm(x),n(x) € R[z] such that
2+ o+ 1 =m(0)f(2) + n(z)g(x).

Solvezr? — 322 + 4 = 0, two of its roots being equal.

Solvex? — 522 — 42 + 20 = Ogiven that the difference of its two
roots is 3.

Solve2z3 — 22 — 222 — 24 = 0, two of the roots being in the ratio
3 : 4.

Solvexr? — 1222 4 392 — 28 = 0, the roots being in A.P.
Solver? — 922 + 23z — 16 = 0, the roots being in A.P.
Solve3z? — 2622 + 52z — 24 = 0, the roots being in G.P.

Solvel05z — 14222 + 602 — 8 = 0, the roots being in H.P.
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27.
28.
29.

11.
17.
19.
23.

qx)=x—-2,r(z) =2 —3.
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Solver? — 522 — 22 + 24 = 0 given that product of two roots is 12.
Solver? — 522 — 16z + 80 = 0, if the sum of the two roots is zero.

Find the sum of squares of roots2of! — 623 + 522 — 7z + 1 = 0.

Solution and Hints

. p(z) + q(z) =227 + 2 + 5, and

p(z)g(x) = 2 + 2% + 527 — 1222 — 2 + 6.

p(z)q(z) =

(@4,-1-1—-1 (b)—1,-2,3 (c)1,2,3

(d) Divide the equation by and use the substitution — % =y
and simplify to get the roots = %5, %

4 2.2 _ .3
3+3x—|—3m x°.

(e) z = 0is not a root, dividing by: and substitutingy = 2x + %
and simplifying we get: = #, %ﬁ
(f) (22 + 14z + 24)(2® + 11z + 24) = 42? and now divide by

—15+ 129

22 and use a suitable substitution to get= 5

—6,—4

. Letc be a common root of both the equations, subtracting we get

¢ = 28, substituting value of in first equation we get = +4.
10.¢(z) =z —2,r(z) =0
Yes 12.No 140. 15.3. 16.a=—4
(@)d(z) =z — 3 (b)d(x) = 2> — z (C)d(x) =

m(z) = §,n(z) = -4, 20.2,2,-1 22.-3,-2.4
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Chapter 4

Matrices

4.1 Introduction

Definition 4.1 (Matrix) A matrix is a rectangular array of numbers with
m rows andn columns. It is represented by

am1 Gm2 " Amn] ..

wherea;; € R(1 <i <m,1 < j < n) are calledentries. We say that
matrix A is of sizem x n in this case.

For simplicity we shall also denote the above matrixdy= (a;;).

Definition 4.2 (Row or Column matrix) A matrix of orderl x n is called
a row matrix and a matrix of orden x 1 is called column matrix.

ForinstanceA = [-2 3 0] is arow matrix of size x3 andB =

13
is a column matrix of sizd x 1.

Definition 4.3 (Square matrix) A matrix having same number of rows
and columns is called a sqaure matrix.

Definition 4.4 (Zero matrix or Null matrix)
A matrix containing all entries equal to zero is called zeratnix.
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Definition 4.5 (Diagonal entries of a matrix) Let A= (a;;) be ann x n
square matrix. The entrieg;, 1 < ¢ < n are called diagonal entries of the
matrix A.

Definition 4.6 (Diagonal matrix) A square matrix of size. x n (n € N)
whose all non-diagonal elements are 0 is called a diagontxma

Definition 4.7 (Identity matrix) A square matrix of sizee x n (n € N)
whose all diagonal entries are 1 and non-diagonal elemeat8 ia called
identity matrix of sizen. We will denote it bylr,,.

1 0 1 00
For example]s = [O 1] andi3= {0 1 0
0 01

Definition 4.8 (Addition and scalar multiplication)

Let A = (a;;) andB = (b;;) be two matrices of sizer x n. Then the sum
of two matricesA and B is defined asd + B = (a;; + b;;). Further for
anyk € R, we definek A = (ka;;), the scalar multiplication.

Definition 4.9 (Matrix multiplication) Let A = (a;;) be a matrix of size
m x pandB = (b;;) be a matrix of sizep x n. Then the product of two
matricesA and B is a matrix of sizem x n which is defined asAB =

p
(cij) = D ainbuj.
k=1
Definition 4.10 (Elementary row - transformations)
We define elementary row - transformations as follows :

1. Replacingith row of A by a scalar multiple (say # 0) of the same
row i.e. in notationgR;.

2. Replacingth row byith row plus\ times thejth row i.e. in notation
R, - R; + )\Rj.

3. Interchangingth row with jth row i.e. in notationR; <> R;.



Matrices 55 56 Algebra and Geometry

Definition 4.11 (Elementary column - transformations) 2. Rows that consist of all zeros must be grouped togethdreabat-
We define elementary column - transformations as follows : tom.

1. Replacingith column of A by a scalar multiple (say # 0) of the 3. In any two successive rows that do not consist entirelyeobg, the

same column i.e. in notation(;. leading 1 in the lower row occurs farther to the right thanléaeling

. ) ) 1 in the higher row.
2. Replacingith column byith column plus) times thejth column i.e.

in notationC; — C; + AC;. Example 4.2 The following matrices are in row echelon form:
1 5 2 -7 010 0 01 0100 -3
3. Interchangingth column withjth column i.e. in notatioi’; < C;. 013 1{,/0 0 0[,|0 0 o0,][00 1 0 2

. 0 01 4 0 00 0 00 00 0 0 1
Example 4.1 We now apply elementary row - transformations to reduce

1 2 3 Example 4.3 Use elementary row operations to convert the matrix in its
matrix A = |2 5 3| to the identity matrix. So we perform the follow- 003
10 8 row echelon form:{0 0 0
ing elementary row operations : 240
1 2 3 0 0 3
Ry - —2R; + Ry, R3 —» —R; + Rgtoget, [0 1 -3 Solution : PerformRi, «+» Rztoget, [0 2 4
0 -2 5 0 00
1 2 3 0 01
Rs — R3+2R,toget, |0 1 —3 Perform3 R, and$ R; to get, [O 1 2
0 0 -1 0 00
1 2 3 01 2
R3 — —Rgtoget, |0 1 -3 PerformR; <+ Rotoget,|0 0 1] ,the required row echelon form.
00 1 0 00
120 Example 4.4 Use elementary row operations to convert the matrix in its
Ry -+ 3R3+ Ry, Ry - —3R3+ Rytoget, |0 1 0 0 3 0
001 row echelon form|0 0 4
100 2 31
Ry — —2Rs + Ry toget, [0 1 0] ,the Identity matrixs. 01 0
001 Solution : PerformRy <> Rs, %Rl toget,|2 3 1| PerformR; + Ry
Definition 4.12 (Row echelon form) A matrix is said to be in row echelon 00 4 s 1
form if it satisfies the following properties : 2 31 L5 3 _
toget, |0 1 0|.PerformiR;, R3toget,|0 1 0}, the required
1. If arow has a nonzero entry and if this nonzero entry is éntive 0 0 4 0 0 1

call this aleading 1 row echelon form.
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Definition 4.13 (Rank of a matrix) The number of nonzero rows in the
row echelon form of matrixd is called the rank of matrix. It is denoted

by p(A).

1 2 -1 3
Example 4.5 FindtherankofA= |2 4 -4 7
-1 -2 -1 -2

Solution : We now reduce the matrix to its echelon form.
PerformR, — Ry — 2Ry andR3 — R3 + R; to get,

1 2 -1 3
00 -2 1
00 -2 1
1 2 -1 3
PerformR, — Ry, — R3toget, ([0 0 —2 1
00 0 O
1 2 -1 3
Perform—3R,toget, [0 0 1 -1
00 O 0

Thus we have reduced A in its echelon form which has two nanz®ws.
Hencep(A4) = 2.

Definition 4.14 (Reduced row echelon form)A matrix is said to be in re-
duced row echelon form if :

1. Itis in row echelon form.

2. Each column that contains a leading 1 has zeros everyvetssen

that column.
Example 4.6 The matrices given below are in reduced row echelon form
10001100 01 3 1 2 0 5 0
010,[00},010,000,00140
0 00 0 01 0 00 0 0 0 01
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Example 4.7 Find row echelon form and reduced row echelon form of
0 2 4

00 3
1 01
01 2
Solution : PerformRs <> R3 and%Rl toget, {1 0 1
0 0 3
1 01
Perform%Rg, Ry <> Rytoget, [0 1 2|, which is row echelon form.
0 0 1
Further performRy, — Ry — 2R3 and R, — Ry — R3 to get,
1 0 0
0 1 0] ,whichis now reduced row echelon form.
0 01

4.2 System of Linear equations

Definition 4.15 (System of Linear equations)A finite set of linear equa-

tions in the variables, x5, - - - , z,, is called asystem of linear equations
or alinear system The sequence of numbey, so, - - - , s, is called aso-
lution of the system ifz; = s1, 0 = s9, -+, , = s, IS @ solution of

every equation in the system.
A system of equations is said to bensistentif there is at least one
solution of the system, and call@consistentif it has no solution.

We shall later discuss in details the conditions of consistdor a lin-
ear system.

Consider an arbitrary system ai linear equations im unknowns
given by

1121 + 01222 + -+ a1y, = b

Am1Z1 + Cm2T2 + -+ AmnTn, = by

wherea;;, by € R,1 <i,k <m,1<j<n
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Now we can write this system in the form dfX = B i.e.

ai; a2 ccc Q1 b1
z
a1 @z -+ Ao, 1 by
€2
Tn
| Am1 Gm2  * Gmn _bm_
where
ailr - Qln b1
z
a1 -+ G2n 1 ba
. . €2
A= D : X=1. andB =
xn nx1l b
LAm1 o Gmn] LM mx1

Definition 4.16 (Augmented matrix) Consider the systerdX = B as
stated above. The matrix of the form

ail a2 ain b
a1 a2 asp  bo
aml am2 - Amn bm

is called augmented matrix for the system and is denotediiy].

Example 4.8 The system of linear equations given by

2r4+y—2z+3w = 8§,
T+Yy+z—w = =2,
3r+2y—2z = 6,
dy+324+2w = -8
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can be written in the form ad X = B

21 -1 37 [« 8
11 1 =1 |y| |2
32 -1 0 |z] |6
04 3 2] |w -8

Example 4.9 Write the following linear system il X = B form.

r+2y —3z+4w = 2
20+ 5y —2z4+w =
Sr+ 12y — 72+ 6w = T.

Solution : Write the system as

1 2 -3 41 1|" 2

2 5 —2 1| Y| =1

5 12 -7 6| |~ 7
w

Example 4.10 Find the solution set of the linear equation — 5y = 3.

. . 3+ ot .
Solution : Lety =t € R be arbitrary. Then: = +T Thus the solution

set is given by

3+ 5t
{($79)6R2:x:%,y:t,t€R}.

Example 4.11 Find the solution set of the linear equation
r4+y+z—w+2u=0.

Solution: Letu =t e R,w=s € R,z =r € R,y = m € Rto get
x = —m —r + s — 2t. Thus the solution set is given by

{(=m —r+s—2t,m,r,s,t) :m,r,s,t € R}.
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Example 4.12 Consider the system given by

T —2y+z 3,

20+ 3y + =z 4,

y—"T7z = 5,

z—y—z = 2.
1 -2 3 -
. . 2 1| "
This system can be written $ Y
1 -1 —1] YA

and hence the augmented matrix

1 -2 3 3
2 3 1 4
[AlB] = 0O 1 =75
1 -1 -1 2

Definition 4.17 A system of linear equations

a1r1 + a2 + - - + a1pTy

a21T1 + a22T2 + - - - + a2, Ty

Am1x1 + Gm2T2 + - - + Ampp Ty

N O s W

b17

= b27

by,
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whereq;; € R,1 <i <m,1 < j < nis said to behomogeneousf all

thed;’s are all zero. Further, if somig is nonzero, then the system is said
to be anon-homogeneous system of linear equations.

Example 4.13

20 +y+3z+6w =
3xr—y+z2+4+3w =
—x—2y+3z =
—x—4dy—2z—Tw =

o O O O
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is a system of homogeneous linear equations, whereas

2 —y—2z = 0,
r+2y+z = 0
dr — Ty —5z = —1.

is a system of non homogeneous linear equations.

Definition 4.18 (Leading variables and free variables)

Let AX = B be a system of linear equations. The variables correspgndin
to leading 1's in the row echelon form of the augmented matti3] are
called leading variables or pivots. The nonleading variables are called
free variables

Example 4.14 Identify the free variables and leading variables for tHe fo
lowing system:

20+ 6y = —11,
6x + 20y — 62z = -3,
6y — 18z = —1.
Solution : We write the system in the form of
2 6 0 x -1
6 20 —6| |yl =1-3
0 6 —18] |z -1
The augmented matrix is
2 6 0 -11
[A|IB] =6 20 —6 -3
0 6 —-18 -1

Perform{Rs, SRy, Ry — Ry — 3Ry,

13 0 -4
02 —6 30
01 -3 -3
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13 0 -4
PerformR; — R, —2R3, [0 0 0 9
01 -3 —¢%
13 0 -4
PerformRy <+ R3, |0 1 -3 % which is the row-echelon form of
1

o0 o %

3

the augmented matrik4|B]. The variables corresponding to leadiing
arex andy. The variablez is free.

Example 4.15 Identify the free variables and leading variables for tHe fo
lowing system:

42y —3z—4dw = 2
20 +4y — 52z —Tw = T,
-3z —6y+1lz+14dw = 0

Solution : We write the system in the form

1 2 -3 —4|* 9
2 4 -5 -7 Y =1|7

3 —¢ 11 14| |7 0
w

Thus the augmented matrix is

1 2 -3 —4 2
[AB]=|2 4 -5 -7 7
-3 —6 11 14 0

P_erformR2 — Ro —_2R1 andR3 — 3R; + R3 to get,

1 2 -3 —4 2

0 0 1 1 3| .PerformRs — R3 — 2R to get,

00 2 2 6

[1 2 -3 —4 2]

0 0 1 1 3| which is the row-echelon form of the augmented
00 0 0 O

matrix [A|B]. The variables corresponding to leaditig arex andz. The
variablesy andw are free.
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4.3 Elimination Methods

Gauss Elimination Method: Suppose we have a system of linear equa-
tions AX = B. The following steps are used to find the solutions of this
system by Gauss Elimination method :

1. Reduce the augmented matfix B] to its row echelon form using
elementary row transformations.

2. Identify the free variables and assign them value®.in

3. Form equations from the obtained row echelon form and fied t
expression for the remaining leading variables in termge# f/ari-
ables.

Gauss Jordan Method : Consider a system of linear equatiodX = B.
The following steps are used to find the solutions of thisespsby Gauss
Jordan method :

1. Reduce the augmented matfit| B] to its reduced row echelon
form using elementary row transformations.

2. ldentify the free variables and assign them valueR.in

3. Form equations from the obtained row echelon form and fired t
expression for the remaining leading variables in termgexd f/ari-
ables.

Example 4.16 Solve the following system by using Gauss Elimination
method:

r+y+2z = 9,
2z + 4y — 3z 1,
3x+6y—>5z = 0.

Solution : Reduce the augmented matrix to row echelon form
11 2 9
[AB]=12 4 -3 1
36 -5 0
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PerformR, — Ry — 2Ro andR3 — R3 — 3R; to get,

11 2 9

0 2 -7 -17

0 3 —-11 =27
11 2 9

Perform}R,toget, [0 1 - -
0 3 —-11 -27v

11 2 9

PerformR; —+ R3 — 3Ry toget, |0 1 _% _1?7

00 -1 -3

2 2
11 2 9
Perform—2R,toget, [0 1 —I —1iI
0 0 1 3

so that[A| B] is in row echelon form. Thus, we get the following equa-
tions:x+y+2229,x—%y: —177,2:3.

Hence substituting the value= 3 we gety = 2, which further yields
x = 1. Hencex = 1, y = 2, z = 3 is the solution of the given system.

Example 4.17 Solve the following system by using Gauss Jordan method:

r+3y—2z4+2u = 0,

204+ 6y — 52z —2w+4du—3v = -1,
52+ 10w+ 15v = 0,
20+ 6y + 8w+ 4u+18v = 0.

Solution: Reduce the augmented matrixremlucedrow echelon form
13 -2 0 2 0 O

2 6 -5 -2 4 -3 -1

00 5 10 0 15 5

26 0 8 4 18 6

PerformR, — Ry — 2Ry andRy — R4 — 2R to get,

[A]B] =

13 -2 0 2 0 O
00 -1 -2 0 -3 -1
00 5 10 0 15 5
00 4 8 0 18 6

66 Algebra and Geometry

PerformR3 — R3 + 5R, andRy — R4 + 4R5 to get,

o O W o

0
1
0
2

o

o
S O =
o O N
S O O

Perform%R4 +» R3 to get row echelon form,
1 3 =2 0 2 0 O
00 1 2 0 3
00 0O O0O01
00 0 O0O0O0OTO
PerformR; — Ry — 3R; and Ry — R; + 2R, to getreduced row
echelon form,

Wl =

1304200

0012000

000001 %

000O0O0TO0TO
Here the leading variables arez, v and the free variables aggu, w.

Soputy = t,u = s, w = r wheret,s,r € R are arbitrary. Forming
equations from reduced row echelon form, we get,

1
z+3y+4w+2u=0,z+2w=0,v = 3
Using values ofy, u, w andv we get,

r=-3t—4r—2s,y =tz = —2r,w:r,u:s,z}:%asthe
solution of the system.

4.4 Consistency of a system

Consider a system of: linear equations im unknowns given by,

4111 + a19T2 + -+ a1y, = by

a91%1 + a22%T2 + -+ + G2pTy, = bo

A1 T1 + Q222 + -+ Gn®n = b
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Let the system be written in the form dfX = B (say).

1. Consistent system The systemd X = B is said to be consistent if
p(A) = p(A, B), i.e. the system has atleast one solution.

2. Unique solution: The systemd X = B admits a unique solution if
p(A) = p(A|B) = n (number of unknowns).

3. No solution: If p(A) # p(A|B) then the system is inconsistent and
admits no solution.

4. Infinite number of solutions : If p(A) = p(A|B) < n (number of
unknowns), then the system admits an infinite number of isoisit

Particular cases :
1. Homogeneous system of linear equationd X = O:

(a) Forsystem AX O, the identityp(A) = p(A|B) holds clearly.
Thus we conclude that a system of homogeneous equations i
always consistent.

(b) X = (z1, 22, ,2,) = (0,0,---,0) is always a solution of
a system of homogeneous equations, which will be called the
trivial solution henceforward.

(c) If p(A) < n (number of unknowns) then the system admits an
infinite number of solutions.

2. SystemAX = B, where Ais ann x n matrix :

(&) The systemdX = O admits only trivial solution number of
solutions ifdet(A) # 0 or equivalentlyp(A) = n, since in this
caseX = A~'0=0.

(b) The systemAX = O admits infinite number of solutions if
det(A) = 0.

(c) AX = B, asystem of nonhomogeneous linear equations eithel
admits infinite number of solutions or no solutiondift(A) =
0 but if det(A) # O, then the system admits a unique solution
vizX = A7'B.
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Example 4.18 Solve the system

20 —y—3z = 1,
or + 2y —62 = 5,
3r—y—4z =

Solution : Write the system as

2 1 =3| |z 1
5 2 —6f |yl =15
3 —1 —4] |z 7
2 1 -3 1
Thus,[AIB]=|5 2 —6 5
3 -1 —4 7
PerformRy, — —5R1 + 2Ry, R3 — —3R1 + 2R3 to get,
2 1 -3 1
0o -1 3 5
0 -5 1 11

2 1 -3 1
PerformRs — —5Rs + R3, |0 —1 3 5
0O 0 -14 -—-14
Herep(A) = p(A|B) = 3 (number of variables), so the system has a
unigue solutionz = =14 = 1.
Now —y + 3z = 6 givesy = —2 and2x + y — 3z = 1 givesx = 3.
The unique solution of the system is givendby= 3,y = -2,z = 1.

Example 4.19 Solve the system

2 4+y—2z+3w = 8§,
r+y+z—w = =2,
3r+2y—2z = 6,
dy+3z+2w = -8
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21 -1 3] [« 8
o 11 1 —1f|y| _ |-2
Solution : Write the systema3 9 _1 0 1 7 |6
04 3 2] |w —8
21 -1 3 8
11 1 -1 -2
Thus,[A|B] = 39 1 0 6
04 3 2 =8

11 1 -1 -2
21 -1 3 8
3 2 -1 0 6
0 4 3 2 -8
PerformRy; — Ry — 2Ry, R3 — R3 — 3R; to get,

PerformR; ++ R to get,

1 1 1 -1 -2
0 -1 -3 5 12
0 -1 -4 3 12
0 4 3 2 =8

PerformR; — Rs — Ry, Ry — R4 + 4R, to get,

1 1 1 -1 -2
0 -1 -3 5 12
0o 0 -1 -2 O
0 0 -9 22 40

PerformR,; — R4 — 9R3 to get,

11 1 -1 -2
0 -1 -3 5 12
0 0 -1 -2 0
0 0 0 40 40

Here p(A) = p(A|B) = 4 (number of variables), so the system has a
unique solution. Here{0w = 40 = w = 13 = 1.
Now —z — 2w = 0 givesz = —2. Further—y — 3z + 5w = 12 gives

y=—landx +y+ 2z —w = —2givesz = 2.
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The unique solution of the system is givendby= 1,y = —1, z = —2,
w = 1.

Example 4.20 Examine consistency of the system :

20+ 6y = -—11,
6x + 20y — 62z = -3,
6y — 18z = -—1.

Solution : Write the system in the form of
2 6 0o -11
[A|IB] =16 20 -6 -3
0 6 —-18 -1

13 0 -4
PerformiRs, 1Ry, Ry — Ry — 3Ry, [0 2 —6 30
1
01 -3 —%
13 0 -4
PerformR; — R, —2R3, |0 0 0 %
01 -3 —¢
13 0 —%
PerformRy <> R3, [0 1 -3 -3
o0 o %

Thusp(A) = 2 andp(A|B) = 3, hencep(A) # p(A|B), so that the
system is inconsistent and therefore has no solution.

Example 4.21 Solve the system

r+2y —3z+4w = 2
20+ 5y —2z4+w =
Sr+ 12y — 72+ 6w = T.

Solution : Write the system as

1 2 -3 411" 2

2 5 —2 1| Y| =1

5 12 -7 6| |~ 7
w
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1 2 -3 4 2

Thus[A|B]= ({2 5 -2 1 1| PerformRy — Ry —2R; andR3 —
5 12 -7 6 7

—_5R1 + R3 to get,

1 2 -3 4 2

0 1 4 -7 =3|.PerformRs — —2Rsy + R3to get,

02 8 -14 3

[1 2 -3 4 2

0 1 4 -7 —-3|.Sincep(A) # p(A|B) , the system is inconsis-
00 0 0 9

tent and hence has no solution.

Example 4.22 Solve the system of equations:

20 -3y + 52z = 1,
3xr+y—z = 2
r+4y —6z =
2 -3 5 1
Solution:[A[B]= (3 1 -1 2
1 4 -6 1
1 4 -6 1
PerformR, +» R3toget, ({3 1 -1 2
2 -3 5 1

PerformRQ — Ry — 3R1, Rg — R3 — 2R  to get,

1 4 -6 1
0 —11 17 -1
0 —11 17 -1

1 4 -6 1
PerformR; —+ R3 — Ry toget, ([0 —11 17 -1
0 0 0 0
Sincep(A) = p(A|B) = 2 < n = 3 (3 unknowns), the system has infinite
solutions. Herer,y are leading variables andis a free variable. Put
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z=t,teRinz+4y—62=1and—1ly+ 17z = —1to gety = 7L

andz = % Thus the infinite solutions of the system are given by

72  1Tt+1

T Y 11

,z =t wheret € R.

Example 4.23 Solve the system of equations :

r+2y—3z—4dw =
20 +4y — 52z —Tw =
—3r —6y+1lz+ 14w =

Solution : Write the system as

1 2 -3 -4
2 4 -5 -7
-3 —6 11 14

f v e 8
I
o NN

(1 2 -3 -4 2
Thus[A|B]= |2 4 -5 —7 7
-3 -6 11 14 0
PerformR, — Ry — 2Ry andR3 — 3R, + R to get,

1 2 -3 -4 2
PerformRs — R3 — 2Ry toget, |0 0 1 1 3
00 0 0 O
Sincep(A) = p(A|B) = 2 < n =4 (4 unknowns), the system has infinite
solutions. Here variables, z are leading ang, w are free variables. So
puty =t, (t € R)andw = s (s € R)togetr = 11 —2t+sandz = 3+s.
Thus the system has infinitely many solutions given by
r=11—-2t+s,y=1t,z=3+s,w=swheret,s € R.
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Example 4.24 Solve the system of equations:

r4+2y—3z—-2w+4du = 1,
20 +5y — 8z —w+6u = 4,
r+4y—Tz4+50+2u =

Solution: Write the system as

xr
1 2 -3 —2 4] |y 1
2 5 -8 -1 6| |z| =14
14 -7 5 2| |w 8
u

1 2 -3 -2 4 1
Thus[A|B]=12 5 -8 -1 6 4
14 -7 5 2 8

PerformR, — Ry — 2Ry andR3 — R3 — Ry to get,

12 -3 -2 4 1
01 -2 3 -2 2
02 —4 7 =27

PerformR3 — R3 — 2Ry, R1 — Ry + 2R3, Ry — Ry — 3R3,

10 1 0 24 21
Ry — Ry — 2Ry sequentially togetj0 1 -2 0 -8 -7

00 0 1 2 3
Sincep(A) = p(A|B) = 3 < n =5 (5 unknowns), the system has infinite
solutions. Here variables, y, w are leading and, u are free variables.
So putz = ¢,(t € R)andu = s (s € R) to getx = 21 — ¢ + 24s,
y = —7+ 2t + 8s andw = 3 — 2s. Thus the system has infinitely many
solutions given by,

r=21—t+24s,y=—7+2t+8s,z=t,w=3—2s,u=3s,

wheret, s € R.

74 Algebra and Geometry

Example 4.25 Find the values ok for which the system will have a unique
solution:

r+y+z = 6,
z+2y+32z = 10,
r+2y+ iz = 10
1 1 1 6
Solution : Herd A|B] = |1 2 3 10
1 2 X 10
PerformRy — Ry — R; andR3 — R3 — R; to get,
11 1 6
0 1 2 4
01 Xx—1 4

PerformR1 — R1 — Ry andR3 — R3 — Ry to get,

10 -1 2
0 1 2 4
00 A=30

The system has a unique solution{fA) = p(A|B) = 3 (3 unknowns). If

A —3 =0thenp(A) = p(A|B) = 2 < 3 (number of unknowns), which
will lead to infinite solutions to the system. Hence the sysk&as a unique
solution if A # 3.

Example 4.26 For what values oh will the system admit no solution :

2e+y = A,
r—z = 1,
y+2z = 1L
1 0

0 -1 1
1 2 1

Solution: Herd A|B] =

S =N
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PerformR; +» R to get,

1 0 -1 1 1 0 -1 1
2 1 0 M| PerformRy — Ry—2Rytoget|0 1 2 X-—2f.
01 2 1 01 2 1
1 0 -1 1
PerformR; — R3 — Rotoget, [0 1 2 A—2
00 0 3=\

Herep(A) = 2. If A — 3 = 0thenp(A|B) = 2 and in this case the system
admits infinite solutions. Butih — 3 # 0 = p(A4) # p(A|B) = 3. Hence
A # 3 leads to no solution.

Example 4.27 For what values of does the system admit infinite solu-
tions :

20 =3y + 6z —dw = 3,
y—4z 4w 1,
dr —5y+82—9w = A

2 -3 6 -5 3
Solution: HerdA|B]= {0 1 -4 1 1
4 -5 8 -9 A
2 -3 6 -5 3
PerformR3 — R3 — 2R toget, |0 1 —4 1 1
0 1 -4 1 X-—6
2 -3 6 -5 3
PerformR; — R3 — Rotoget, ({0 1 —4 1 1
0 0 0 0 X-—7
Herep(A) = 2. If A\ — 7 = 0thenp(A|B) = 2 and in this case the system
admits infinite solutions. Thus = 7 leads to infinite solutions.

Example 4.28 Determine the values df so that the system

r—2y = 1,
r—y+kz = =2
ky+4z = 6.
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(i) has a unique solution, (ii) no solution, (iii) infinite mber of solutions.

1 -2 0 1
Solution : HerdA|B] = |1 -1 k -2
0 k 4 6
1 -2 0 1
PerformRy, — R, — Ry toget, |0 1 k£ -3
0 k 4 6
1 -2 0 1
PerformR3; — R3 — kRptoget, [0 1 k -3

0 0 4—k* 6+ 3k

(i) Unique solution : The system admits a unique solutioh-if%? # 0
i.e.k #2andk # —2.

(i) No solution : The system admits no solutiorkif= 2, since4 — k? =
0 but6 + 3k # 0, so thatp(A) # p(A|B).

(iii) Infinite solutions : The system admits infinite solut®if £k = —2
since4 — k%2 = 0 and6 + 3k = 0, so thatp(A) = p(A|B) =2 < 3
(number of unknowns).

Example 4.29 Determine the values df so that the system

r+y—2z2z = 1,
20 4+3y+kz = 3,
r+ky+3z =
(ii)has a unigue solution, (ii) no solution, (iii) infiniteumber of solutions.
1 1 -1 1
Solution: HerdA|B] = |2 3 k 3| .PerformRy — Ry —2R; and
1k 3 2
R3 — R3 — R; to get,
1 1 -1 1
0 1 k+2 1
0 k-1 4 1
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PerformRs — Rs — (k — 1) R, to get,

11 ~1 1
0 1 k+2 1
00 B+k)(2—k) 2—k

(i) Unique solution : The system admits a unique solution if
B+k)(2—Fk)#0i.e. k#2andk # —3.

(i) No solution : The system admits no solutiorkif= —3, since
(3+k)(2—k)=0but2—k =5 #0,sothatp(A) # p(A|B).

(iii) Infinite solutions : The system admits infinite solui®if £ = 2

since(3 +k)(2—k) =0and2 — k = 0, so thatp(A) = p(A|B) =
2 < 3 (number of unknowns).

Example 4.30 Determine the values @f so that the system

x+y+kz 1,
c+ky+z = 1
kx+y+z = 1.

(i) has a unique solution, (ii) no solution, (iii) infinite mber of solutions.
11 k1

Solution : HergA|B] = |1 k 1 1]

E 1 11

PerformR, — Ry — Ry andR3 — R3 — kR; to get,

1 1 k 1
0 k—1 1—k 0
0 1+k 1—Kk% 1—k

PerformR; — R3 + R5 to get,

1 1 k 1
0 k-1 1-k 0

0 0 @Q+kQ—k 1—k
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(i) Unique solution : The system admits unique solutiofRif- k) (1 —
k) #0ie. k# —2andk # 1.

(i) No solution : The system admits no solutionkf= —2, so that
p(A) # p(A|B).

(iii) Infinite solutions : The system admits infinite solut®if £ = 1, so
thatp(A) = p(A|B) = 2 < 3 (humber of unknowns).

Example 4.31 Determine the values d@f so that the system

T+2y+z = 3,
r+y+z = k,
3x4+y+32z = k%

(i) has a unique solution, (ii) no solution, (iii) infinite mber of solutions.
121 3

Solution : HerglA|B] = |1 1 1 k|.PerformRy; — Ry — R; and

31 3 k?

R3 — R3 — 3R to get,

1 2 1 3
PerformR; — R3 —5Rotoget, |0 —1 O k—3
0 0 0 k2—5k+6

(i) Unique solution : The system cannot admit unique solutiince
p(A) =2 < 3 (number of unknowns).

(i) No solution : The system admits no solutiorkff — 5k + 6 # 0, i.e
k # 2 andk # 3, so thatp(A) # p(A|B).

(i) Infinite solutions : The system admits infinite solut®if £k = 2 and
k =3, so thatp(A) = p(A|B) = 2 < 3 (humber of unknowns).
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4.5 Eigenvalues and Eigenvectors

Definition 4.19 (Eigenvalue and Eigenvector)Let A be an

n x n matrix with real entries. A scalar € R or C is called an eigenvalue
of A if there exists a nonzero vectore R™ such thatdv = Av and vector
v is called eigenvector corresponding to the eigenvalue

Remarks:
Z1
. . . L2
1. If Ais an eigenvalue ofl, then there exists a vector= | . | such
Tn

that Av = \u. If I denotes am x n identity matrix and) denote the
zero vector, then we get,

Av=Nv= (M - A)p =0,

a homogeneous system of linear equationsyjn. . , z,,.
Further, it has a nontrivial solution # 0 if and only if det(A] —
A)=0.

2. det(AI — A) is a polynomial in\ and we shall denote it by(\)
henceforward, which is called as characteristic polynbofial. Let
c(A) = N+ ap A" Lo ag A+ ag. The rootshy, g, - - - A, (NOt
necessarily distinct) of the equatief\) = 0 are called characteris-
tic roots i.e. eigenvalues of.

Example 4.32 Let A = B ;1] . Find eigenvalues ofl.

. , [ro 1 4] [A-1 -4
Solution : Conside\] — A = [0 )\] - [2 3} = _9 _3l
Thusc(\) = det(M —A) = (A—1)(A—=3) —8=(A—=5)(A+1). Thus
c¢(A) =0 = A =5and)\; = —1 are the eigenvalues of.
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1 0 -1
Example 4.33 Let A = [1 2 1 ] . Find eigenvalues ofi.
2 2 3

Solution : Consider
A0 O 1 0 -1 A—1 0 1
M—-—A=|[0 X 0] —|1 2 1| = -1 A—2 -1 1.
0 0 X 2 2 3 -2 -2 =3

Thus,c(A) = det(Al — A)
= A=D[A=2)A=3) =2 —0+1[242(\ —2)]
= N =6\ +11)—6.

Thusc(A) =0 = A\ =1, A2 = 2, A3 = 3 are the eigenvalues of.

1 -6 —4
Example 4.34 Find eigenvalues ofi = [0 4 2
0 -6 -3

Solution : Considen] — A =

A0 0 1 -6 —4] [rA=1 6 4

0xO0/—|0 4 2|=|0 rx—4 -—2].

00X |0 -6 -3 0 6 A+3
Thusc(\) = det(A — A) = (A—1)[(A—4)(A+3)+12]+—6(0)+4(0) =

A =222+ A= AA—1)2. Thusc(A\) =0= A1 =0, 2 =1, A\3 = 1 are
the eigenvalues ofl.

011
Example 4.35Let A = [1 0 1] . Find eigenvalues ofl.
1 10

A -1 -1
Solution : Considen] — A= (-1 X -—1].

-1 -1 A
Thusc()\) = det(A] — A) = A3 —3X — 2. Thusc(\) = 0 = A\ = —1,
Ao = —1, A3 = 2 are the eigenvalues of.
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0 3
Solution:c(A\) =0= (A—2)(A=3)=0= )\ =2,)2 = 3.

Example 4.36 Find eigenvalues and eigen-vectorsdf {2 4] .

Supposey; = Lﬂ is an eigenvector correspondingXp = 2.

Let(\I — A)oy =0= ([(2) g} — [?) ;j) m = {8 . Hence,

0 —4| |z 0 " J0 —4 0
{0 _1] {y] = M . Writing augmented maltn){0 10 and ap-
. . 0 0 0
plying the row operation?; — R; — 4R, we reduce to, 0 -1 ol

The variablez is free andy leading. So put: = t € R andy = 0 to

get,v; = B] = [3] =t [(1)] Thus an eigenvector corresponding to eigen
1
value 2 isv; = _0] .

Supposer, = m is an eigenvector correspondingte = 3 Let (o] —

- 3 0 2 4]\ [z 0 .
Ay =0 = <_O |~ [0 3]) {y} = M . The augmented matrix is

[1 -4 0

0 0 ol The variabley is free andr is leading. So puy =t € R

andz — 4y = 0 = x = 4t so thato, = [ﬂ = rﬂ =1t m . Thus an

. . . . 4
eigenvector corresponding to eigenvalue 3is= H )

Example 4.37 Find eigenvalues and eigenvectorsAoE B g} .

Solution :c(A\) =0= A2 -3\ —4=0= A\ =4, g = —

1. Eigenvectow; = [‘ﬂ corresponding td; = 4.

_ ~ 3 2| |z 0 .
Let (M1 — Aoy = 0 = [_3 2] [y} = [O] . Writing aug-
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3 0 and applying the row operatiaR, —

mented matrlx{_3 9 0

0 0 O
is leading. Sopuy:teRand3x—2t:0:>m:%toget,

R{ + R>, we reduce to{3 —2 O] . The variabley is free andz

e 2 _ 2. .
U] = {y} =3 [3} Thusy; = [3] is an eigenvector.

2. Eigenvectowy = M corresponding toy =

Let (Aol — A)e = 0 = [:; } } [ } Writing aug-
mented matrix and applying row operations

Ry — Ry + R1 andR; — ——R1 we reduce to[ ]

The variabley is free andx leading. So puty = R and
r+y=0=2z=—t,togety, = [ﬂ =t { 11] . Thusw, = [_11}
is an eigenvector.

-1 —4 -3
Find eigenvalues and eigenvectors/f

4 6 6
Example 4.38LetA= |1 3 2 |.

xT

Solution :c(A) =A% —4X\2 = A +4=0= A\ =1, g =4, \3= —1
1. Eigenvectow; = |y | corresponding td; = 1.
z
-3 —6 —6
-1 -2 —2| |y

0
) [0] .
1 4 4 z 0
Writing augmented matrix and applying the row operations

Ry = —Ry,Ri — —iRi,Ri — Ry — Ry, R3 — R3 — Ry,

xr
Let ()\1[ — A)U_l =0
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0O 0 0O
Ry — Ry — R3,R3 — 3R3,wereduceto|l 0 0 0
01 10

The variablez is free andr, y are leading variables. So put=t €
Randy +z=0=y = —t,x = 0 to get,

T 0 0
nn = |y| =t |—1|.Thusv; = |—1] is an eigenvector.
z 1 1
X

2. Eigenvectorn = |y | corresponding tOe = 4
z

0 -6 —6f |z 0
Let ()\2] — A)U_Q =0=|-1 1 =2 y|l = (0

1 4 7 z 0
Writing augmented matrix and applying row operations
Ry = Ry + R3, Ry — —, Ry — Ry — 5Ry, we reduce to

01 10
0 0 0 0].Thevariablez is free andz, y are leading. So put
1 4 70
z=teRandy+z=0=y=—-t,andz +4y+72=0=z =
x -3t -3
—3ttoget, = |y| = | =t | =t |—1| . Thus an eigenvector
z t 1
-3
corresponding to, = 4isvy = |—1
1
X

3. Eigenvectows = |y | corresponding tdg = —1.
z
-5 —6 —6] [= 0
Let ()\3] — A)ﬁg =0= |-1 —4 -2 y| = {0
1 4 2 z 0
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Writing augmented matrix and applying row operations
R3 — R3 + Ry, —R1, — Ry, R1 — R1 — 5Ry, we reduce to

0 —14 -4 0
1 4 2 0] . The variablez is free ande, y are leading. So
0 O 0 O
putz =t € Rand—14y — 4z = 0 = y = —2¢t, andz + 4y + 2z =
T —6
0=2=—-S%togetvy = |y| =L [-2|. Thus an eigenvector
z 7
—6
corresponding tds = —1isv3 = | -2
7
Example 4.39 Find eigenvalues and eigenvectors of
21 0
A=1(0 1 -1
0 2 4

Solution :c¢(A\) = 0= (A —3)(A —2)2 = A\; = 3,\2 = A3 = 2 (Note
that eigenvalues are repeated).
x
1. Eigenvector; = |y | corresponding td; = 3.
z

1 -1 0] [= 0
Let(All—A)171:6:> 0 2 1 yl =10
0 -2 -1 |z 0
Writing augmented matrix and applying the row operati®n —
1 =1 0 0]
Rs + Ro,wereducetol0 2 1 0
0 0 00

The variable: is free andr, y are leading variables. So put= ¢ ¢
Rand2y+z2=0=y=—-Landz —y=0= 2 = -5 toget,

x 1 1
n=|y| = —% 1| . Thusv; = | 1] is an eigenvector.
z 2 2



Matrices 85

X
2. Eigenvectowy = |y | corresponding td, = 2. Let
z

0 -1 0 x 0
Ml —A)wvy=0= {0 1 1 y| =10
0 -2 =2]| |z 0
Writing augmented matrix and applying row operations
0 1 0 0]
R3 — $R3+ Ry, wereduceto[0 0 1 0
0 0 0 0]
The variabler is free andy = 0, z = 0 to get
T 1 1
= |y| =t |0]|.Thusuoy, = |0] is an eigenvector.
z 0 0

(Note : Here we get only two eigenvectors for the obtained ¢igenval-
ues. This needot be true in general as shown in an example below.)

Example 4.40 Find eigenvalues and eigenvectors of

1 -6 —4
A=10 4 2
0 -6 -3

Solution :c(A\) = 0 = A(A —1)2 = A\; = 0, 2 = A3 = 1. Note that4
has repeated eigenvalues.

X
1. Eigenvectory = |y| corresponding td, = 0.
z

-1 6 4 x 0
Let(MI— Aoy =0= {0 —4 =2 |yl=10

0 6 3 z 0
Writing augmented matrix and applying the row operation

$R3, Rs — R3 — Ry,
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-1 6 4 0
wereducetol 0 2 1 0| . The variablez is free ande,y are
0O 0 0O
leading variables. So put=t € Rand2y+z =0 =y = —£ and
2
—x+6y+42=0=z=ttoget,v; = [ . Thus
2
v = |—1] is an eigenvector.
2

X
2. Eigenvectotr = |y | corresponding tds = Ao = 1.
z
0 6 4 x 0
Let(Aol — A)oo=0= [0 -3 =2 [y| = |0
0 6 4 z 0
Writing augmented matrix and applying row operatiémﬁ,
+R3,—Ro, R3 — R3 — Ry, Ry — Ry — Ry, we reduce to

03 20
0 00O
0 00O

The variablesr and z are free andy is leading variable. So put

x:tER,z:seRand3y+2,z:O:>y——— to get
T 1t + 0s 1 0 1
v= |yl =|0t—2%| =t|0| +%|-2|.Thuss; = |0| and
z 0t + 1s 0 3 0
0
vz = | —2| are eigenvectors.
3

Theorem 4.1 (Cayley Hamilton Theorem) Every square matrix satisfies
its characteristic polynomial.
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Example 4.41 Verify Cayley Hamilton theorem and use it to fintd!, if

1 1 3
itexists. A= | 1 3 -3
-2 —4 —4

Solution : Herez(\) = A% — 20\ + 8. We check whethet(A) = O, where
O denotes thes x n zero matrix. We have

—4 -8 —12 12 20 60
A2=110 22 6 |,A3=]20 55 —60|.Hence
2 2 22 —40 —80 -—88

c(A) = A3 — 204 + 81

12 20 60 11 3 8 0 0
=120 52 —-60/-20]1 3 -=3|+|0 8 O
—-40 —-80 -—88 -2 -4 —4 0 0 8
000
= (0 0 0
000

Thusc(A) = A3 — 204 + 81 = O, so that Cayley Hamilton theorem
is verified. Furtherlet(A) = —8 # 0, henceA~! exists.

SinceA? — 204 + 81 = O, post-multiplying byA—! we get,

ASATL —20AAT +8IATP=0= A2 201 +8471 =0

= A~ = 1(201 — A?)

20 0 0 —4 -4 —12 24 8 12
= A= ]0 20 0| —-|10 22 6 | =g |-10 -2 —6
0 0 20 2 2 22 —2 -2 -2

4.6 Exercises

1. Why are the following matrices not in row echelon form ?

0 1 001 0 0
1 ol 0 1 0], 1 ol
0 0 O

2. Why are the matrices given below not in reduced row echiglon?
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1 11 0 1 3

[(1) ﬂ, 0 1 0f{,|]0 0O
0 01

3. Determine whether the matrices given below are in rowleatferm

or reduced row echelon form?
1 0 0 5 0 0

o0 sl ool oy gLl 75
01 0 4 0 0

4. Apply elementary row and elementary column transforomatito

1 4 3 2 1 000
reduce matrixd = |1 2 3 4|{to|0 1 0 O
2 6 7 5 0 010

(Hint . USERQ — Rl, R3 — 2R1,Cg — 401, 03 — 301, C4 — 201,
—1C3,Co — C5,Cy — 205, Cy — Cs).
5. Find the rank of the following matrices :

1 2 3 1 2 3 4 1 2 3
4 6 71,12 4 6 8,|2
4 4 4 3 6 9 12 |0

(Ans:3,1,3,2)
6. Solve the following systems using Gauss elimination wekth

@ zx+y+22=8—z—2y+32=1,3x — Ty + 4z = 10.

(b) 20 +2y+22=0, 2x+5y+22=1,8x+y+4z=—1.

(c) 2y +32=1,3x+6y —3z=—2,6x + 6y + 32 =05.

d) 3z+2y—2=-15, bxr+3y+22=0, 3zx+y+3z=11,
—6z — 4y + 2z = 30.

(e) 2z4+y+5z+w =5 x+y—3z—4w = —1,3x+6y—2z4+w =
8,2x 4+ 2y + 2z — 3w = 2.

14 3t 1—4t
(Ans(a)::c:3,y:1,z:2,(b):r:—J; =

(c) Inconsistent system (d)= —4,y =2,z =7

7Z:t7

1
er=2,y= g,z:O,w: 5)
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7. Solve the following systems using Gauss Jordan method :

(@) 4 — 8y =12,3z — 6y =9, —2x + 4y = —6.
(b) 22 —y—32=0,—x+2y—32=0,x+y+ 4z =0.
€ 3r+y+2:=3,22—3y—2=-3,x+2y+ 2 =4.
d)2z24+2=4,2—2y+22="7,3x+2y =1.
(€) 2z +y+2z4+w=6,6x— 6y + 62+ 12w = 36,

dr + 3y + 32z — 3w =—-1,2x 4+ 2y — 2z +w = 10.

(Ans (a)x = 3 + 2t,y = t, (b) Trivial solutioni.e.z =y =2=10
@r=Ty=22=-1@w="y y="""

@r=2y=1,z=—-1,w=23)

7Z:t7

8. Show that the following systems are inconsistent:
@z4+y+z=3 20—y+32=2 3x—2y+2z =4,
dr +y+ 5z = 2.
b)z+y—2243w=4, 20+3y+3z—w=23,
5 + Ty + 4z +w = 5.

9. Show that the following systems have infinite solutions :

@2x+z=4,2—-2y+22=7,3x+2y=1.
(b) 2e —y+32=1,3z+2y+2=3,x —4y+ 5z = —1.

() z4+y—2z4+4w = 5,2x+2y—3z4+w = 3,3x+3y—4z—2w =
1.

(d) 22 —by+3z—4dw+2u=4,3z — Ty + 2z —d5w+4u =19,
5¢ — 10y — 5z — 4w + Tu = 22.

(Hint : Check thaip(A) = p(A|B) < n(number of variables)).

10. Find all possible solutions of the systems given belb#h@y exist):

@ z+y+2z=4,2x+5y—2z=3.
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(b) 224+y+32+6w=0,3z—y+2+3w =0, —x—2y+3z =0,
—x—4y —2z—Tw=0.

©2r—y—z=2,2+2y+2=2,40—Ty—5z=2.

d) 22 —3y+T72=5,3x+y—32=13,2x + 19y — 47z = 32.

@ z—-3y+2z—w+2u=23x—-9%Y+7z—w+3u =7,
20 —6y+ 7z +4w—5Su=".

Solutions :

(a)x:%,y:%,z:t,teﬂ&

by r=—t,y=—-t,z=—-t,w=1t,tecR

( 7y ) b )

(©) x:%,y:@,z:t,teﬂ&

(d) System is inconsistent hence no solution exists, .

@ y=tw=su=r((sr € R)are free variablesy =
3t+5s—8r,z=1—2s+ 3r.

11. Check whether the systems given below have unique sofutilf
not, find all possible solutions.
@ x+2y+2=3,20+5y—2z=—-4,3x—2y—2z2=>5.
b)) z+2y+22=1,20+2y+32=3,x —y+32=5.

C©z+y+z=6xr—y+2z2=53rx+y+z2=238,
20 =2y +3z=1.

d) 22 —y+32=1,3z+2y+2z=3, 2z — 4y + 5z =—1.

(e) 2z +y+22z+w=06,5x — 6y + 62+ 12w = 36,
4+ 3y + 32z — 3w =—1,2x 4+ 2y — 2z +w = 10.

M 22+y—524+w=8,z+3y—6w=—15,2y — 2+ 2w = —5,
r+4y — 7z + 6w = 0.

Q) dz—y+2z4+w=0,220+3y—z—2w =0, 7x—4z—5w = 0,
22 — 11y + 7z 4+ 8w = 0.

Solutions :
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(@) Unique solution : Sincg(A) = p(A|B) = 3 (3 unknowns)
andx =2,y =—-1,2 =3.

(b) Unique solution : Since(A)
ande =1,y =—-1,2=1.

(c) Unique solution : Since(A)
andx =1,y =2,z = 3.

(d) Infinite solutions w = 55T ¢y = 34T > —¢ ¢ € R.

(e) Unique solution : Since(A) = p(A|B) = 4 (4 unknowns)
andx =2,y=1,z=—-1,w = 3.

(f) Unique solution : Since(A) = p(A|B) = 4 (4 unknowns)
andx =3,y=—-4,z=-1,w=1.

(9) Infinite solutions 1z = =88 ¢ = 4435 5 — ¢ o = 5,
teR.

p(A|B) = 3 (3 unknowns)

p(A|B) = 3 (3 unknowns)

12. Find the values of for which the following systems admit a unique

solution :

@ 2x+3y+52=9,Te+3y—22=82x+3y+ Az =5.

b)) r+y+2=6,z+2y+32=10,z+2y+4z =\
(Ans(@):A#5,():A=11)

13. Find values oA for which the following systems admits no solution:

@2r+y=2,2—2=3,y+2z2=A\

b)z+y+z=6,r+2y+32=10,x + 2y + 3z = A\

(c) 22—3y+62z—bw =3, y—4dz+w =1,4x—5y+82—9%w = A.
(Ans(@):AN£ -4 B)AA10)(C)N#£T)

14. Find the values ok for which the following systems infinite solu-
tions:

@2x+y=3,z—2z=A\y+2z=1.

b)z+y+z2z=6,r+2y+32=10,x + 2y + 3z = \.
((Ans (@):A =1, (b) A = 10)
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15. Find the value ok andu so that the systems given below admit (a)
Unigue solution (b) No solution (c) infinite number of sobuts.

@zx+y+2z=6,2+2y+32=10,x+2y+ A= phas
(Ans : (a)/\#Sa:UJGRa(b)/\:3yu7é107(c))‘:3au:
10).

(b) 22 +3y+52=9,Ter +3y — 22 =8,2x + 3y + Az = .
(Ans: (@A #5, p€R, (D)A=5u#9,(C) A =5,p=9).

16. Find the eigenvalues of the following matrices :

b LR e s
(Ans(a): 4,-1),(2,2) (2,4) (b):1,2,3)

17. Find eigenvalues and eigenvectors of the following iTest
1 1 1] [3 1 4] [2 -1 1
{154 __110],[; ﬂ 1 2 3,0 2 6/,]1 2 -1].
-1 1 0] [0 O 5] [T -1 2
Solutions :

@) A1:4,U-1:H, Ay =0, -sz

(b) A =501 = m el m

1
2 0 4
(C) )‘i:1>_1737 v = 1 , Uy = -1 , U3 = 7
-1 1 1
1
0
0

(d) \; =3,2,5,01 = |:

0 1 17
(e) )‘121)273’ U1 = 1 , U2 = 1 , U3 = 0
1 1 1]
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18. Find eigenvalues and eigenvectors of the following itedr

1 2 2 1 2 3 21 0 0O 1 0
0 2 1|,l0 2 3[.]0 2 1/,]0 0 1
-1 2 2 0 0 0 0 2 1 -3 3
Solutions

1 2
(a) )\i:152)2751: 0 , U2 = 1
0 0

1

1

2
(b) /\i:152)27 v = , U2 = 1
1 0

[\

0 1

1 1
() \i =2,2,2,01 = Oj| AN =1,1,1,01 = [1j|

19. Find eigenvalues and eigenvectors of the following icest
-3 =7 =5| (1 1 0 2 11 1 00
2 4 3 01 0,1 2 1],(2 0 1].
1 2 2 0 01 0 01 310

[—3
(a) N=111 v =

1 [0
(b)) ; =1,1,1, 57, = {0 ,02= |0
0

1
(c) \i=3,1,1,v1 = |:1
0

0 0 1
(d) )\iI—l,l,l,ﬁl: -1 , Ug = 1 , U3 = 0
1 1 0
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20. Verify Cayley Hamilton theorem and hence fiad! for the follow-

ing matrices :

01 2 1 2 2
@A=|1 2 3| A=|0 2 1
31 1 -1 2 2

1 -1 1
Ans (a):c(A) = A3 —3X? —8A +2andA~ =1 [—8 6 —2]
5 -3 1

2 0 -2
(b) c(A) = A3 —BA? +8A —4andA~t=1 [—1 4 —1] .
2 -4 2
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Equations (1) are the relations between the co-ordinatésecfame point
P referred to the two frames of reference of axes. These @msatre

Chapter 5 called the equations of translation.
. . . Example 5.1 The origin is shifted to the poirit:, 2), find the value of so
Analytlcal Geometry of Two Dimensions that the transformed equation of locus given by the equatiordz+3y =
5 will not contain the first degree term in
5.1 Change of Axes Solution: We haver? + 4z + 3y — 5 =0 (1)

Since origin is shifted to the poirth, k) = (h,2). We know equations of

5.1.1 Translation of Axes translations

LetOX andOY be the original rectangular frame of reference of axes. Let

A/ 0 0

O’X’ andO'Y” be the new axes parallel to the original axes. Qéth, k) v=vth y=y+th=y+2 (2)
be the new origin. LeP be any point in the plane with co-ordinates y) Using (2) in (1), we getz’ + h)% +4(z' +h) +3(y' +2) — 5 = 0. Hence,
and(z’, ") with respect to original and new co-ordinate axes respelgtiv 2" + (2h + 4)2’ + 3y + h% + 4h + 1 = 0. This equation will not contains

A 1 first degree term in’ if 2h + 4 = 0. Thereforeh = —2.

G ol F Rotation of Axes :

A
B . o a > P(z,y),(=',y)
o EM EN R M ‘
Fig. 5.1

From the new originO’, the perpendicula®’ M is drawn onOX. Also MY >
from the pointP, the perpendiculaP N is drawn toO X. Then perpendic- o

ular PN meetsO’ X’ in the pointV'. Fig. 5.2

1 — _ ! / ! ! /
From fig. 5.1, we gew = ON,y = PN,a’ = O'N',y’ = PN". Let OX andOY be the original rectangular frame of reference of axes.

— i _ / ! / H H
Hence,z = O]Y = (/)M + M],V = ,OM +/O N - h + &' Similarly Let OX’ andOY’ be the new positions of axes obtained by rotating the
y=PN=PN +N'N=PN+OM=y +k Thus original rectangular axe® X andOY through an anglé keeping origin
r=2+h, y=vy +k Q) fixed. From pointP, the perpendicula’ M is drawn onOX. Also the
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perpendicularP N’ is drawn onOX’. Then NN is drawn perpendicular by rotating the original rectangular axésX andOY through an anglé
to OX and N'M’ is drawn perpendiculaPM. Then/M'PN’' = 6. We keeping origin fixed. Letz, y) be the coordinates of the poiftw.r.t. the
havex = PM,y = PM,x’ = ON',y/ = PN'. From AONN’, we get OXY coordinate system and, y) be the coordinates of the poiftw.r.t.
cosf = %—{V, sinf = Nx—])ﬂ Thus, the OX'Y” coordinate system. D P makes an anglé w.r.t. the positive
direction ofz’ axis i.e w.r.t.0 X’ thenO P makes an anglgp-+6) w.r.t. the

ON = a'cosf, NN' = z'sinf (1) positive direction ofr axis i.e w.r.t.OX. Hencegz' = rcos ¢,y = rsin¢

andz = rcos(¢ + 0),y = rsin(¢ + 6).

FromAPM'N’, cos§ = %,[,,sinﬁ = M;,N/

PM' = y'cos, M'N'" = 3 sinf (2) Thus, x = rcos(¢+ 60) = r(cos¢cosf — sin ¢sin )
Nowz = OM =ON — MN = 2'cosf — 1y sinf 3)

— ON— M'N' (- MN = M'N') y = rsin(¢+ 6) = r(sin ¢ cosd + cos ¢sin 0)
' = 2'sinf + 1y cosb (4)

= 2'cosf — 1y sinb.

imilarl = PM=PM +MM
Similarly, y + 5.2 Removal ofzy term

= PM'+N'N (- M'M = N'N)
= ¢y cosf+ 2’ sinf. To determine the angléthrough which the axes should be rotated so that
the transformed form of the equation
Thus, r = 2'cosf —1y sind a2 + 2hay + by + 29z + 2fy + ¢ =0 )
y = 2'sinf+ 1y cosf (2)
is free from product term. Suppose axes are rotated throngingle6.
The equations (2) are called the equations of rotations. Then the equations of rotation are
A
p r = 2'cosf —1y sind
y = a'sinf+1y cosb (2)
Using equations (2) in equation (5) we get
a(z’ cos @ — y' sin 0)% + 2h(z' cos 6 — y' sin ) (2’ sin 6 + 3’ cos 0)
+b(z'sin @ + 3 cos 0)% + 2g(a’ cos O — o' sin 0) + 2f (2" sin O + 3 cos 0)
+c=0.
— > (acos? @ + 2hsinfcosf + bsin?0)z? + 2(—asinfcos + hcos? —
ig. 5.

hsin? @ + bsinf cos 0)x'y’ + (asin?@ — 2hsinf cosf + bcos? 0)y'> +
2(gcos@ + fsin@)x' +2(—gsinf + fcosf)y +c=0i.e.

Another method. Let OX andOY be the original rectangular frame of

reference of axes. Lé2.X’ andOY” be the new positions of axes obtained 'z + 202y + 0y +2d 2 +2f'y +¢c=0 (3)



Analytical Geometry of Two Dimensions 99
where

d = acos®0+ 2hsinfcosd + bsin® 0

K = —asinfcosf + h(cos? O — sin® @) + bsin @ cos

V¥ = asin®?6—2hsinfcos + bcos> 0

g = gcosO+ fsinf, f'= —gsinf + fcosb.

The transformed form of equation (1) is equation (3). It widit contain
product termz’y’ if A’ = 01i. e. if

—asin 6 cos 0 + h(cos? 6 — sin? 0) + bsin § cos § = 0.

Multiplying by 2

2h(cos? § — sin? ) (a —b)2sinfcosb
2hcos20 = (a—b)sin26

2 .
tan20 = —h ifa—b#0
a—2>b

1 [ 2h
0 = itan (a—b)

Onthe other hand, if = bthen axes are rotated through an artgte 7, so
thath’ = 0. Thus, if if « = b then axes are rotated through an artte 7,

and ifa # b axes are rotated through an angle=  tan~* (f—f,)) , then
the transformed form of equation (1) will not contains thedarct termzy.

Example 5.2 Shift the origin to a suitable point so that the equatidn-
6z — 4y — 1 = 0 will be in the formz? = 4by state the value dof.

Solution: We have
22— 6z —4y—1=0 (1)
Shift the origin to pointh, k). The equations of translations are

r=2+hy=v9y +k (2)
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Using (2) in (1)

(' +h)?—6(x'+h) -4 +k)—1 = 0
2?4+ 2ha’ +h?—62' —6h—4y —4k—1 = 0
2 =4y’ + (6 — 2n)2’ + 4k + 1 — h? (3)
Equation (3) will becomes? = 4by if 6 — 2h = 0, and4k + 1 — h? = 0.
Hence,h = 3, and4k = 8i.e. k = 2. Thus(h, k) = (3,2) andb = 1.

Example 5.3 Change the origin to poirfty, 5) and transform the equation
2?2 — 22y + 3y? — 10z + 22y + 30 = 0. Find («, B) if the transformed
equation does not contain the first degree terms in the nevvdinates.

Solution: We have

22 —2zy + 3y — 102 +22y +30 =0 (1)
Let (h, k) = («, B). Shift the origin to the pointa, 3).

c=a'+ay=y +0 (2)

Using (2) in (1), we get
(¢'+a)? =2(2" +a)(y' +B)+3(y +5)* ~ 10(z +a) +22(y +5) +3 = 0
22 = 22"y + 92 + (2a — 28 — 10)2’ + (=2 + 63 + 22)y/
+ (@ —2aB +38% —10a + 228+ 3) =0 (3)
Since the transformed equation (3) does not contains figgedeerms in
z' andy’. Therefore2a — 28 — 10 = 0 and—2a + 6 + 22 = 0. Thus,

a—pf-5 = 0 (4)
—a+33+11 = 0 (5)
Solving equations (4) and (5) we gaet= 2,8 = —3. Thus(a, ) =
(2,-3).
Invariants:-
The quantities which remain unchanged by change of axesadezl dn-

variants. Translation of axes or rotation of axes or bothcaiked change
of axes.
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Theorem 5.1 If by rotating the axes through an anglewithout changing
the origin the equationz?+2hay+by? +2gx+2fy+c = 0 is transformed
into a’'z" + 212"y’ + by'? + 2¢'x" + 2f'y' + ¢ = 0 then

(a+b=d +0b and (ii)yab — h% = a'b/ — 2.

Proof: The given equation igz? 4 2hxy +by? +2gx+2fy+c=0 (1)
Suppose axes are rotated through an afigidnen the equations of rotation
are

x =2’ cos —y sinb, y=2'sin@ + 1 cosd (2)

Using (2) in equation (1)

a(z’ cos 0 — i sin 0)% + 2h(z' cos 0 — 3 sin 0) (2 sin @ + y' cos 0)

+ bz’ sinf + o cos 0)* + 2g(2’ cos § — ¢/ sin 0)

+ 2f(2'sinf + 1y cosf) +c=0

a(cos? § 4 2h sin 6 cos @ + bsin® 0)z"
+  (—2asin @ cos O 4 2h cos® 6 — 2hsin® 6 + 2bsin O cos )’y
+ (asin® 6 — 2hsin O cos § + bcos? )y
+ (2gcosf+ 2fsinf)z’ + (—2gsin® + 2f cos )y’ + c = 0.

We may rewrite this equation as

a'z? + 202y +0'y? 4+ 2¢' 2" + 2f"y' 4+ ¢ = 0, where

a = acos®f+ 2hsinfcosf + bsin? (3)

K = —acosfsind + h(cos>0 —sin?6) +bsinfcosh  (4)
V¥ = asin®@ — 2hsinfcosd + bcos? 0 (5)

g = gcosO+ fsinh, f' = —gsin@+ fcosh

Adding equations (3) and (5), it is easy to see tifat v’ = a + b.
We know the formulae,

sin 260 = 2sin 6 cos 0, cos 20 = cos® 6 — sin 0
14 cos20 =2cos?d, 1 —cos20=2sin’0 (6)
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Multiply equations (3), (4) and (5) by 2.

2d' = 2acos® 6+ 2h(2sin 6 cos ) + 2bsin? 0
= a(1+ cos26) + 2hsin 26 + b(1 — cos 20)
= (a+b)+ [(a—b)cos20 + 2hsin 26]

2/ = —2asinfcosf + 2h(cos® H — sin? @) + 2bsin 6 cos f
= 2hcos20 — (a — b)sin 20
20 = 2asin®6 — 2h(2sin 6 cos 6) + 2bcos? @

= a(l —cos20) — 2hsin 20 4 b(1 + cos 20)
= a+b—[(a—b)cos20 + 2hsin 20

Now

(2d")(2V) — (20')* = {(a+b)+ [(a — b)cos26 + 2hsin 20|}

{(a+b) —[(a—b)cos 20 + 2h sin 26]}
—[2h cos 20 — (a — b) sin 20)?

= (a+b)?—[(a — b)cos20 + 2hsin 26]?
—[2h cos 20 — (a — b) sin 20)?

LAY —h*) = (a+b)?—[(a—b)*cos?20

+4h(a — b) sin 26 cos 20 + 4h? sin® 26)
—[4h? cos® 20 — 4h(a — b) cos 26 sin 260
+(a — b)?sin” 20]

= (a+b)? — (a — b)*[cos? 20 + sin” 20|
—4h?[sin? 20 + cos? 26]

= (a+0)?—(a—0b)?—4h* = 4(ab — h?)

at/ —h? = ab—h?

-.a+ bandab — h? are invariants.

Example 5.4 By rotating the axes, origin being unchanged the expression
ux + vy becomes/z’ + v'y’, show thatu? + v? = u'? + 2.
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Solution: Suppose axes are rotated through an aégléhen
x =12 cos — 1y sinf,y = 2'sinf + 1/ cos b.

Now the expression

ur+vy = u(z'cosh— 1y sin)+ v(z'sinf + y cos )
= (ucosf +vsinf)z' + (—usinf + v cos )y’
— u/x/ + U/y/

where v/ = wcosf+wvsinf, v/ = —usinf 4+ vcosf

u? +0? = (ucosf +vsinh)? 4 (—usinf + v cos 0)?

= wu?cos® 0 + 2uvsin 6 cos  + v? sin® 6

+u?sin? 0 — 2uv sin 6 cos 6 + v cos? 6
= u? + V2.

Thereforeu? + v is invariant.

5.3 General Equation of second degree imand y :

Theorem 5.2 A general equation of second degree represents a conic.

Proof: Let ax? 4 2hxy + by? 4+ 29z + 2fy +c =0 (1)

be the general equation of second degree amdy.

We know that the equation (1) represents a pair of lines iff

A = abe + 2fgh — af? — bg? — ch? = 0 SO suppose\ # 0.

Rotate the co-ordinate axes through an aifigte 7 if « = band ifa # b

then . o
_ - —1
9—2tan (a—b)' (2)

Then the transformed form of equation (1) does not contagnpttoduct
term inxzy. Suppose equation (1) is transformed to

Az 4+ By? +2Ga’' +2Fy + C =0 (3)

Case | : Supposed = B(# 0). Then equation (3) represents circle.
Case Il : Supposed # B and A # 0, B # 0. Then equation (3) can be
written as
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G F
12 i 12 S =
Ax +2AAx + By +ZBBy c
G\? F\? G?  F?
Al +=2) +B(y+=) = = +—=—c=K
(ac+A>+ <y+B> A+B c
G*  F?
here K = — + — — 4
where A+B c (4)

Now we shift the origin to the poirt=2, =) . Then equation (4) becomes
A$”2 + By//Z - K (5)

If K = 0, then equation (5) is homogeneous equation of second degree i
z andy”. Equation (5) can be factorised into two linear factors wiigb
resents pair of straight lines.  and B are of same sign then it represents
imaginary lines and ifA and B are of opposite signs then it represents real
lines. If K # 0. Then dividing equation (5) byx

12 12

T y
K—/z4+K—/B:1 (6)

If K/A andK/B are positive then equation (6) represents ellipsé Ifl

and K/B are negative then equation (6) represents imaginary ellifs
K/A and K/B are of opposite signs, then equation (6) represents hyper-
bola.

Case lll : Supposed = 0 but B # 0. Then equation (3) becomes

By? +2Gz' +2Fy' +¢ = 0

F
B <y'2 + QEy'> = —2G2’ —¢
F F? F?
12 s s _ /I s
B(y +2By +BQ> 2Gx c+B

/ E ? — I F? Q
B(y—i—B = 2G|z 2BG+2G'
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Shift the origin to the poin(% - £, —%) . Then above equation re-
duces to

By = —2Gz" i.e. y" = —%x”.

This is the equation of parabola.df = 0, then it represents pair of parallel
line and in this casé\ = 0.

Case IV : SupposeB = 0 but A # 0. Then equation (3) is transformed to

22— _% y//

This is equation of parabola.
Thus every general equation of second degree represerits con

Centre of the Conic:

Definition: A point in the plane of conic which bisect every chord of the
conic passing through it is called centre of the conic. A cdwiving centre

is called central conic. Circle and ellipse are central cofarabola is a
non-central conic.

Proposition: If the centre of the conic is origin then the equation of the
conic is free from linear factor.

Proof: Suppose origin is the centre of the conic

az? + 2hay + by® + 292 + 2fy +c =0 (1)
Lety = mx (2) be the equation of line passing through origin.
At the point of intersection of line (2) and conic (1)
ax® 4 2hx(max) + bm2x? + 29z + 2fmx +¢c = 0
(a+2hm + bm*)z? + (29 + 2fm)z +¢c = 0 (3)

This is quadratic inc. Therefore it has two roots say andz,.

Let P(x1,y1) andQ(z2,y2) be two end points of chord@. But origin

0(0,0) is centre of the conic. Therefore, by definition of centreafic
1+ X2 Y1+ Y2

=0

5 5 =0, x1 +22=0.
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i.e. sum of roots of (3 0. By (3)

—(29+2fm)
(a + 2hm + bm?)

=0 ie. g+ fm=0 forall values of m.

= ¢ =0, f = 0. Thus, coefficient ot = 0 = coefficient ofy.
Puttingg = 0, f = 0 in equation (1) we getz? + 2hzy + by? + ¢ = 0.
This equation is free from first degree terms.

The Centre of the Conic:

Letax? + 2hazy + by? + 297 + 2fy +c =0 (1)

be the equation of the central conic.

Let (x1,y1) be the centre of the conic (1). Now we shift the origin to the
point (x1,y1). Then the equation of translations are

r=a'"+z1, y=y +wun (2)

Using (2) in equation (1)

a(z’ +x1)? + 2h(2'21) (Y + 1) + by +y1)? + 29(z" + 11)
+2f(y +y1) +ec=0

az’? + 2ha'y + by + (azy + hy1 + g)z1 + 2(z1 + by + f)y
+ ax? + 2hx1yy + by} + 2921 + 2fys14+c=0 (3)

Since origin is the centre of the conic (3), we get coeffic@nt’ = 0 and
coefficient ofy’ = 0

ar1+hy1+g = 0 (4)

hxi+byr+f = 0 (5)

Solving equations (4) and (5) we get

_hf—bg _gh—af
Tab—n2 T w2
YY) = b= 12 ab— 2

This is the centre of the conic (1) using (4) in (3) we get

(6)

z1

ax’® + 2hx'y +by* +¢1 =0 (5)
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where
= ax}+2hziy; + byt + 29w + 2fy; +
= azi + hziyr + gv1 + haiy + by + fyi + gvi + fyn +e
= x(azy +hyr +g) +yi(hzy + by + f) + 921+ fy1 + ¢
a = grit+fyte
_ g(hf —bg) + fgh — af) + c(ab — h?)
ab — h?
B abc+2fgh—af2—b92—ch2_ AN
N ab — h? ~ ab—h?
1 /2 /. 2 A
Then equation (5) becomes’> + 2hz'y’ 4 by = ETL
ab —
This equation can be written as
Az +2Hz'y' + By? =1 (6)
This is equation of central conic.
Example 5.5 Reduce the equation
522 + 6zy + 5y> — 10z — 6y — 3 =0 (1)

to the standard form and name the conic.
Solution: We havea = 5,b=5,h=3,9= -5, f = —3,¢c = —3.
A = abc+2fgh —af? —bg* — ch?
= —T75490—45—125+27=—-128 40
Equation (1) represents a conic. As—ab = 9—25 = —16 < 0 equation

1) represents ellipse. Centre of ellipsq is
(1) represents ellips ntr ips R —x

Shift the origin to the pointh, k) = (1,0)
x = d+h=2"+1, y = y+k=1y (2)
Using (2) in (1)
52 +1)2 +6(z' + 1)y + 5y — 102’ +1) -6y —3 =
522 + 62’y +5y% = 8 (3)
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Rotate the co-ordinate axes through an arfgle 7 asa = b. Then the
equations of rotations becomes

/1 !/

' — 2 cosh — " sind = 2" T o, T _ T Y
x I COS Yy S X COS4 Yy Sln4 \/5
" "
. . +y
' — 2" in 6 " 9 — 2 ™ " T_7Z 4
y =x"sinf + 4" cos x Sln4+y cos - 7 (4)
Using (4) in (3)
/"o 1\2 "no__ " /" " 1" 12
(@ 2y) L6l y)2(:1: Y s zy) _ g

5(3,//2 _ Qx//y” + y//?) + 6(.’17//2 _ y//?) + 5(.77”2 + 2$//y” + y//Q) — 16

"2 "2

162" + 4y = 16i.e2n + 2

12 2—2:1

This is the equation of an ellipse.

Example 5.6 Reduce the following equation to its standard form
22+ 2y +y? — 62 —2y+4=0 (1)

Solution: Herea = 1,b=1,¢=4,f = —-1,9 = -3,h = 1.
Sinceh? — ab = 0, the equation (conic) represents a parabola. Rotate
the axes through an angteso that product term:y will be eliminated

from (1). Sincea = b, & = 7. The equations of transformations will be
r = y/ B ! 4 y/

V2 YT T
(' —v/2)* = V2y 2)

T = . Equation (1) will be transformed to

Shift the origin to the pointy/2,0). Then equation (2) becomes

x//Q — _\/gy/'
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Example 5.7 Shift the origin to the centre of the conic and then remove (i) 522+ 6xy + 5y% —4x + 4y — 4 = 0.
the product termry 22 +day+y? —22+2y—6=0 (1) (i) 522 + 62y + 5y — 102 — 6y — 3 = 0.
Solution: Herea = 1,b = 1,¢ = —6,h = 2,9 = —1,f = 1. Since L o 9
h? —ab =4 — 1 = 3 > 0. Therefore equation (1) represents hyperbola. () z°+2zy+y°—22-1=0.

The centre of hyperbola = (hf—bg Qh—ab) = (~1,41). (iv) 52% — 6zy + 5y? + 18z — 14y + 9 = 0.

ab—h2’ ab—h2 ) —
2 2 A
Shift the origin to the poinf—1,1). The equations of transformation are V) 2" +dzy +y" — 20+ 2y —6=0.
(i) 72% — 62y + Ty? + 30z + 10y + 35 = 0.

! _ ! .
r=o -1 y=y +1 (2) (vii) 2% — 22y +9% — 62 —2y +4=0.
Using equations (2) in equation (1) we get 2. Find the centres of the following conics.
% 442’y +y? +4=0 (3) () 22 —4zy — 2y + 10z + 4y = 0.

i 2 2 _
We rotate the co-ordinate axes through an afgé® as to eliminate the (i) 2% — 5wy +y* + 8z — 20y +15=0.

product term. Sincey = b we getd = Z. Then the equations of rotations (iiiy 522 + 62y + 5y% + 22z — 6y + 21 = 0.
are
3. Determine the nature of the following conics
2 = 2"cosf —19y"sinf = 2" cos T_ y” sin T .
4 4 () 22 —azy+2y* —22—6y+7=0
. LT 7 )
y = 2'sinf+1y"cosf = x”smz + 1" cos 1 (i) 22 +y> -8z —6y+5=0.
, =y’ "+ () (i) 322 —8xy —3y? —10x —4y +2 =10
= , Y= .
V2 V2 (iv) y? + 4z + 4y + 16 = 0.
Using above equations (4) in equations (3) 4. Remove the product term from the following equations.
(13”—3/”)2_'_4(%‘”—@/”) (x//+y//)+(x//+y//>2+4_0 0) 5m2+3xy+y2+$_y_2:0'
V2 V2 V2 V2 (i) 422 + 62y +4y?> — 22 +2y+3 =0.
Thus,62" — 2, +8 = 0. e.— 2" N y" _ 5. Show that the equatiobu? + 6zy + 5y? — 10z — 6y — 3 = 0,
’ T (\/lg)? 22 ' represents the ellipse. Find its centre, lengths of axastems of

axes and length of latus rectum.
This is equation of the hyperbola. g

_ 6. Show that the equatich:? —6zy -+ — 14z —2y+12 = 0 represents
Exercise 2 a parabola. Find its vertex and latus rectum.

1. Reduce the following equations to its standard form. 7. Determine the nature of the conié¢+ 12xy —4y? — 62 +4y+9 = 0.
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. Discuss the nature of the conié — 42y — 2y? + 10z + 4y = 0.

. Show that the equatiofr? — 4zy +y% — 8z — 6y +5 = 0 represents
a parabola. Also show that

. - 3 1 e . 4
(i) vertexis(2,1). (ii)Latus rectum is .

(i) Focusis(2,2). (iv) Axis of parabola iz —y — 1 =0

(v) The equation of directrix ig + 2y = 0.
Answers

()42 oy = 4 (i) 22 4 4y = 1 (i) 22 = Ly
12 112

(iv) 22 + 4y = 4. (V) 32”2 — y”2 = 1. (Vi) ZT n yT _—
(V”) x//Q = —\/iy/

. (i) (—1,2) (i) (—4,0) (i) (—4,3)
. (i) Ellipse (ii) Circle (iii) Hyperbola (iv) Parabola

. (i) (1,0), semi-major axis= 2, semi-minor axis= 1. Equations of
major axisz + y + 1 = 0, Equations of minor axis —y — 1 = 0,
length of latus recture= 1.

_ 2
. Vertex= (1, 1), latus rectum= il 7, 8. Hyperbola.

Exercise 3

. The origin is changed to the poifit — 1). Determine the value of
so that the new equation of the locus giverehy +4x+3y—7 =0
will not contain first degree term in.

. The origin is changed to the poift 2, k). Determine the value of
so that the new equation of locus giveny? + 3z + 4y = 0 will
not contain first degree term in

. Find the form of the equatiow? + 3zy — 4y + = + 3 = 0 when
origin is shifted to the point—2, 1).
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10.

11.

12.

13.

14.
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. Shift the origin to the point—1, 2) and transform the equatiar? +

v+ 22+ 4y = 0.

. Shift the origin to a suitable point so that + 42 — 8y + 12 = 0

will be in the formz? = 4by. State the value df.

. Shift the origin to a suitable point so that the equatidn- 6z —

4y + 1 = 0 will be in the formz? = 4ay. State the value of.

. Under the translation of axes, the equattef — 3y +4y+5 = 0is

transformed int@x"? — 3y’ + 42’ — 8y’ +3 = 0. Find the coordinates
of new origin w.r.t. old origin.

. The origin is shifted to the poirit:, 2). Find the value of: so that

the transformed equation of locus given by the equatiba- 4z +
3y — 5 = 0 will not contain a first degree term in

. Transform the equatidx? +2zy+3y*+8z+3y+4 = 0 by rotating

the axes through an angtewheref = sin™'(2),0 < 6 < Z,
keeping the origin same.

Find the transformed form of the equatioh+ 4xy + y? = 0 when
the axes are rotated through an angle tan—'(3) without chang-
ing the origin.

Transform the equationlz? + 24zy + 4y> — 20z — 40y — 5 =
0 by shifting the origin to the point2, —1) inclined at an angle
tan~! (5*) to the original axes.

If by rotation of axes without changing the origin the atipn az? +
2hzy + by? = 0 becomes/z? + 2h'2'y’ + by = 0, then show
that(a — b)% + 4h? = (a’ — b')% + 412

Transform the equatiot:? 4+ 21/3zy 4 2% — 1 = 0 by rotating the
axes through an angle 86°.

If under rotation of axes, without shifting the origihetexpression
ax? +2hxy+by® 429z +2 fy+cis transformed ta’ 2’2 42k 2"y +
Vy'? + 2¢'a’ + 2f'y’ + ¢ then show that? + f2 = ¢ + f72.
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15. What does the equatid? + 2xy + 3y* — 18z — 22y + 50 = 0
becomes under shifting the origin to the poigt 3) followed by
rotation of the axes through?

Hyperbola
Rectangular
Hyperbola

16. Transform the equatior? —5zy+y>+8z—20y+15 = 0 by shifting
the origin to the point—4, 0) and then rotating the axes through an
angle45°.

17. Find the anglé through which the axes should be rotated to remove
thezy term in the following equations.
() 2% — 4oy + 49> — 2y +2 =0
(i) 72?2 + 120y — 5y? + 42+ 3y —5=0
(i) 422 + 120y +9y? + 22+ 2y +7=0
(iv) 3622 + 28zy + 2gy*> + 8z + 3y + 9 = 0.

Q-
(V) 822 — 122y + 17y? + 4o + 6y — 2 = 0. o
(&)
18. Remove the product termy from the following equations: g
() 322 = 5zy +3y2 =5 =10 (i) 422 4+ 2v/3zy + 22 — 7 = 0. 5
c
Answers 2 g
S g
1. h=-1 2k=-1 3.22%+30y—4y? — 4o — 14y — 1 =0. 7 g
©
O

22— y?+3=0. 5 (-2,1),b=2. 6.(3,-2),a=1.
(1,2). 8. h = —2.

© N A

9922 — 142y’ + 51y + 205" — 60y’ + 100 = 0.

10. 1122 — 162"y’ — y?> =0. 11.2" — 4y +1=0.

Parallel

-
c
Q

i)
o

£
@]

O

13. 52 + y? = 1. 15.42" +2y"? = 1. 16. 72" — 3y"* = 2.

17. (i) 4 tan~! %. (i) § (iii) & tan~! (—Tm) .
(iv) %tan_1(4). (v) %tan_1 (%) .

18. (i) z"? + 112 = 10 (ii) 5z +y? =17.

Intersecting



Chapter 6

Planes in three dimensions

6.1 Introduction

The reader has already been introduced to the study of timsndional
geometry through vector methods. In this chapter, we stlalyes. We
determine the equation of planes in different form. Notd thasections
6.2 to 6.8, we take the revision of known results.

6.2 Rectangular Cartesian Co-ordinates of a point in Space

In a plane we determine the position of a point by means of mrpaian-
gular axes. A point in the plane is identified with an orderad pf real
numbers calledhe coordinates of the pointWe now extend this idea
to the points in space. LeX’OX, Y'OY and Z'OZ be three mutually
perpendicular axes intersecting in a paiht The pointO is called as the
origin. The axesX'OX, Y'OY andZ'OZ are respectively called as the
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x- axis, y-axis andz -axis and will be referred aghe coordinate axes.
These three co-ordinate axes taken two by two, determimes thutually
perpendicular planes. These three planes are ddltecbordinate planes
and are briefly written as they - plane,yz - plane,zx - plane.

6.2.1 Orientation of Axes

The positive direction of the-axis is the direction in which a right handed
screw will move if the sense of rotation of the screw is frora fiositive
direction of ther-axis to the positive direction of thg-axis.

z

x
Fig. 6.2
Thus,0X, OY andOZ are the positive directions of the co-ordinate axes

(see Fig 6.2). We then say that the co-ordinate system istedeas a right
handed system.
NOTE: We always use right handed rectangular coordinatesys

6.2.2 Co-ordinates of a Point

In order to define the coordinates of a point in space, we reefbtiowing
definition. A line L said to be perpendicular to a planeif it is perpen-
dicular to every line contained in. It can be shown that the ling is per-
pendicular tar if and only if L is perpendicular to two distinct intersecting
lines in7. Let P be any point in the space (see Fig 6.3). Deaw PN
perpendicular on they-plane. Drawseg N A andseg N B perpendicular
to thex andy axes respectively. Draw alsgeg PC perpendicular to the
z-axis.
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Thus, corresponding to every point in the space we can firebthpints
A, B,C on the coordinate axes. We now call the directed lengitis
OB andOC the x,y and z coordinates of the poinP. We denote it as
P(z,y,2).

M
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Remark 6.1 If we draw planes parallel to the coordinate axes passing
through P, we get a parallelepiped ANB — CMPL (see Fig.6.4).
PM,PL,PN are perpendiculars oz, zx andxy panes respectively.
These planes interseet y, z axes inA, B, C respectively. By, y, z co-
ordinates ofP we mean real numbers, y, z such thatr = OA, y =
OB, z = OC. Now, PN 1 zy-plane, therefore® N is perpendicular to
every line in thery-plane. HencePN 1 OX, alsoNA 1 OX.So0X is
perpendicular to two intersecting linésV and N A. Thus,O X is perpen-
dicular to the plane formed by N and N A. Thus,OX is perpendicular
to every line in the plane. Henc&X L PA, (see Fig.6.4). Similarly,
OY 1L PBandOZ 1 PC. Hence,z,y andz are the projections o P
on OX, OY andOZ respectively. IfOP make anglesy, 3, v with axes
OX,0Y andOZ respectively; and P = r, then

x = OA = projection ofOP on thez-axis = r cos «
= OB = projection ofO Pon they-axis = r cos 3
z = OC = projection ofOP on thez-axis= r cos .

6.2.3 Direction Cosines

In plane geometry the direction of a line is determined bynicsination ¢

(0 < 0 < m); i.e., angled made by a line with positive direction of the
x — axis. To determine the direction of a line in space, we must know the
angles made by the line with y andz axes. Now on a linel B there are
two possible directionsiz. AB andBA. Hence to be definite we consider
direction of vectors.

Definition 6.1 (Direction angles) Let OP represent a vectaf in space.
Let o, 3, be the angles made Wy P with positive directions oft, v, z
axes respectively, with < «, 8,7 < 7. Thena, 3, are called the direc-
tion angles of the vectar.

Definition 6.2 (Direction cosines)If «, 3,~ are direction angles of a vec-
tor 7, thencos a, cos 3, cos v are calledthe direction cosines of T.

We shall write in shortl.c.s. for direction cosines. Further it is customary
to write thed.c.s. asi, m,n (where,l = cos o, m = cos 3, n = cos ).
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Remark 6.2 If [, m,n ared.c.s. of 7, then—I, —m, —n ared.c.s. of —r,
direction angles of-r arer — a, 7 — 3, m — .

Definition 6.3 (Direction cosines of a line)Let L be a straight line in the
space ani, B be points on it. SupposP is a point on the straight line
parallel to the lineL, passing through the origin, such tha3 and OP
have the same direction. The direction angles of the lirege defined to
be the direction angles of the vecioP. If «, 3,~ are direction angles of
aline L, thencos «, cos 3, cos y are called the direction cosinés.c.s.) of
L.

Remark 6.3 If «, 8,~ are direction angles of a ling, thenw — a, 7 — 3,
m — v are also direction angles of the lide Thus, if cos a, cos 8, cosy
ared.c.s. of the line L, then— cos «, — cos 3, — cos v are alsal.c.s. of L.
Any one of these can be usedds.s. of the line L.

Remark 6.4 Two or more lines are parallel if and only if they have the
same sets af.c.s..

Direction cosines of the coordinate aXeection angles of the-axis are
0,7/2,7/2. Therefored.c.s. of the z-axis arecos 0, cos w/2,cos /2 i.e.
1,0, 0. Similarly, thed.c.s. of y andz axes ard), 1,0 and0, 0, 1 resp.

%

L

Fig. 6.5
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Theorem 6.1 If [, m,n ared.c.s. of a line thel? + m? 4+ n? = 1.

Proof. Let L be a line withd.c.s. [, m,n. Let a lineOP be drawn through
the origin0 and parallel to the linel, whereP(z, y, z). The lineL and the
line O P make the same angles with the coordinate axes. Hencé dhe
of the lineOP will also bel, m,n. Leta, 8, be the direction angles of
the lineOP (see Fig. 6.5). Therefore= cosa, m = cos B,n = cos~.
LetOP = r. By theRemark 6.1, we haver = rcosa,y = rcos 3,z =
rcos~y. By the distance formula, we hawé€ + y?> + 22 = r2. Hence,
r2 cos? a 4+ r2 cos® B + 12 cos? v = r2. Thus,

Cosza+cos2ﬂ—|—coszfy:1i.e. P+m?2+n?=1. |

Definition 6.4 (Direction Ratios) If I, m,n ared.c.s. of a line, then any
three numbers, b, ¢ which are proportional; i.e.é = 4+ = = are called
the direction ratios (d.r.s.) of the line.

Note thata, b, c ared.r.s. of a line L, then so aréa, kb, kc for nonzero
real number.

Remark 6.5 In the proof of the Theorem 6.1, we hale= £, m = £,
n = 2. 8o, for a pointP(z,y, z), the d.c.s. of the line OP (O is the
origin) are®, ¥, 2. This means that, y, z are proportional to thé.c.s. of
the line O P. It follows that the coordinateér, y, z) of P ared.r.s. of the
line OP.

Remark 6.6 (Direction ratios of a line joining two points.) LetPQ be a
line passing through the pointB(x1,y1, 21) and Q(x2, y2, 22). Shift the
origin to the pointP. The coordinates of) will then be(zy — z1,y2 —
y1, 22 — 21). But P is the new origin and so the linBQ passes through the
new origin. Hence by thRemark 6.5 d.r.s. of PQ) are precisely the new
coordinates of) viz. x9 — x1,y2 — Y1, 220 — 21.

Remark 6.7 (Relation between direction ratios and directio cosines)
Let [,m,n be thed.c.s anda,b,c ared.r.s. of a line L. By definition
of d.r.s. we have,l = at, m = bt andn = ct for some €R. Since,
12 +m? +n? =1, we havet?(a® + b + %) = 1. Hence,

a b c

l=t——e—o—m=Ft—— n=t—
va? + b2+ c? va? + b+ c? va?+b?+c?
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Note that the same plus or minus sign has been taken through ou

6.2.4 Angle between two lines

Z
Loy

Figure 6.6
X

Let L; and L- be two lines in the space which make an argylgith each
other. Through origirO draw linesOP and OQ parallel to lineL; and
L, respectively, whereP(z1,y1,21) and Q(x2,y2, 22). By the distance
formula we have,

PQ* = (3 — 21)° + (12 — 11)* + (22 — 21)* 1)

Letly,m1,nq bed.c.s. of the lineOP andly, mo, no bed.c.s. of the line
0Q.If OP =r; andOQ = r9, then byRemark 6.1 we haver; = lyrq,
Yy = miry, 21 = Niry, ro = 121"2, Yo = MaTe, 29 = N2T9. Substitute

these values in (1), we get
PQ* = (lyry — lara)* + (mary — mare)® 4 (171 + narg)?
PQ* = (f+mi+ni)ri+ (5 +m3+n3)rs

*2([112 +mimo + nlng)rﬂ"g.
As,1? +m3? +n? =1 andli? + m3 + n3 = 1, we have,

PQ* =1} + 713 — 2(11ly + mimy + nino)riro
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By the cosine rule of trigonometr?Q? = r? + r2 — 2ry75 cos 6.
cos) = lils + mimo + nine.
This gives an expression for the angle between two lines.

Remark 6.8 (Condition for two lines to be perpendicular) If the two
lines are perpendicular, then the angle between them] &§0°, so that
cos # = 0. Hence, we get the conditiof,ly + mymso + ninge = 0.

If the direction ratios of the lines arg, b1, ¢; andas, bs, co, then from
Remark 6.8 the condition for perpendicularity becomes,

aras + biby + c1co = 0.

Remark 6.9 (Condition for two lines to be parallel) If two lines are par-
allel make the same angle with each of the coordinate axesicéjahe
two lines will be parallel, if and only ity = Iy, m1 = mo, n1 = no.

If the d.r.s. of the lines areuy, b, c; andas, bo, co, then the lines will be

ifar — b _ ca
parallel, if - =g =g

6.3 General Equation of First Degree

An equation of the first degree in y, z is of the formax + by + cz = 0,
wherea, b, ¢, d are given real numbers angb, ¢ are not all zero, simulta-
neously.

A surface is called: plane, if given any two points on the surface, then a
straight line joining them also lies completely on the scefa.e. if A and

B are any points on the surface aflds any point on the lined B, then P
also lies on the surface.

Theorem 6.2 Every equation of first degree in y, z represents a plane.
Proof. Consider the first degree equatioruiry, z,

ar +by+cz+d=0 (2)

where the coefficients, b, ¢ are not all zero.
Let A(x1,y1,21) and B(z2, Y2, 22) be any two points on the locus given
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by the equation (2)Then,

axr1+by1 +cxr+d = 0 3)
axy +bys +czm+d = 0 (4)

Let P be any point on the linel B. we show thatP lie on the locus (2)
SupposeP divides AB in the ratiom : n. By the section formula, we get
mxg + nxl, mys + ny17 mzo + n21> Now,
m4+n m-+n m4+n

(mmg + mc1> (myz + nyl) (mzz + nzl>

a| ———— | +b| ——F | + | ————
m—+n m—+n m—+n
m(axy + by + cz1 + d) + n(axe + by + cz2 + d)

e :0
m-+n

coordinates of as, (

using equation (3) and (4)). It follows that the coordinatés’ also
satisfy (2) As P is any point on the linedB. It follows that the lineAB
lies on the locus (2)it can be proved that the set

{(z,y,2) € R®¥laz + by + cz +d = 0}

contains at least three non-collinear points; i.e. thedo), is not a
straight line; also the locus (28 notR3. Therefore the general equation
of the first degree im:, y, z represents a plane. |}

Note, that the property, ifA and B are two points in the set then all points
on the straight line througH and B are in the set; is true for a straight line
and three dimensional space also.

6.4 Normal form of the equation of a plane

To find the equation of a plane in termspothe length of the perpendicular
to it from the origin and, m, n thed.c.s. of this perpendicular. Let be the
plane (see Fig. 6.7) whose equation is required. DtaW perpendicular
to the planer from the originO. Let ON = p. Thed.c.s. of ON are
l,m,n. Observe that if 2/, y/, z’) are coordinates aN, thenz’, v/, 2" are
d.r.s. of ON (see Remark 6.5)
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z
N
p P
(0) S N
\/ v
T
X
Figure 6.7
l,/ yl Z/
T m~n P

So thatz’ = Ip, v = mp,z’ = np. Hence the coordinates df are
(Ip, mp,np). Let P(x,y, z) be any point on the plane. The ofd.r.s. NP
arex — lp,y —mp, z — np (see Remark 6.6). But ON is perpendicular to
N P, becauséV P lies in the planer andON is perpendicular tar. Hence
(see 6.8),

l(x —Ip) + m(y —mp) +n(z—np) =0
lz +my+nz —p(l> +m? +n?) =0
le + my+nz=p, since >+m?>+n®=1.
This equation is callethe normal form of the equation of a plane
Note: From this result, we observe that the equation of any plane is

a linear equation i, y, z. This is the converse of the result that, every
equation of the first degree in y, z represents a plane.

6.5 Transform to the normal form

To transform the equatiom: + by + cz + d = 0 of a planer to the normal
form iz + my + nz = p. Observe that, m,n ared.c.s. of a normal to the
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planer andp is the length of the perpendicular from the origin on it.
As these two equations represent the same ptames have,

—p VI +m?2+n?

n
¢ d Vi rrirE
n
¢

— +1
R S
d Va2 + b2+

b
——m ,n =+ ¢ :
va? 4+ b? + ¢? Va?+b>+c? Va2 + b2+ 2

The positive or negative sign it Va2 + b% + ¢2 is chosen such thatis
always positive. Thus, the normal form of the plane+ by + cz +d =0

IS,
ar + by + cz —:|:< —d )
Va? +b% + 2 Va? + b2 + 2

Remark 6.10 1. We note that the coefficients b andc of z,y andz
in ax + by + cz + d = 0 ared.r.s. of a normal to the plane.

2. Italso follows that the length of the perpendicular frdva brigin on

i —d
the plane ISt

6.6 Angle between two planes

Angle between two planes is equal to the angle between theinals from
any point. Let

axy+byr+cz1+dp = 0 (5)
and axo +bys +czo+dy = 0 (6)

be the equations of the two planes which intersect each. difieserve
thatd.r.s. of a normal to (5)are, b1, c; and of (6) areus, bo, co. If 0 is the
angle between the planes and hence between that normalsvihéave

araz + biby + creo
Vat+ b3+ c2\/a3 + b2+ c3

cosf =
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The two plane are perpendicularaifas + b1bs + c1co = 0 and parallel if,
aq . b1 N C1

an - b2 - CQ'

6.7 Determination of a plane under given conditions

Intercept form of the equation of a plan&o find the equation of a plane

which makes intercepts, b andc respectively on the coordinate axesy
andz. Let,

Az +By+Cz+D =0 @)

be the equation of the plane which makes intercepisc on the coordi-
nate axes. Then the points, 0,0), (0,b,0) and(0,0, ¢) lie on the plane.
The coordinates of each point satisfy. Thua + B.b+C.c+ D = 0 gives
A = —D/a. Similarly, we getB = —D/b, C = —D/c. The equation (7)
can be written as,

D D D
—x——y——2+D=0
a b c
Ty Z\
D(a+b+c>_D

Observe thaD # 0 for otherwise the plane would pass through the origin
and there would be no intercepts on the axes. Hénge + 2 = 1is the
required equation of plane.

6.8 Plane passing through a given point

To find the equation of a plane passing through the pdinat;, y1, z1) and
d.r.s. of whose normal are, b, c. Let the equation of the plane be

ar+by+cz+d=0 (8)

Coordinates ofd satisfy the equation (8%0 we getix +by1+cz1+d =0
so
d= —ax1 — by, — cz.
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Substitute the value af in (8), we have

ax + by + cz + (—axy — by —cz1) =0
a(r —z1) + by —y1) +e(z—21) =0
This is the equation of the plane passing through the geinty;, z;) and
d.r.s. of whose normal are, b, c.

6.9 Plane passing through three points.

To find the equation of the plane passing through three ndimeat points
(x1,y1,21), (x2,Y2, 22), (v3, Y3, 23). Let the equation of the plane be,

ar +by+cz+d=0 9

As the given three point lie on the plane(®#)eir coordinates satisfy (9)
Hence we have,

ar1 +byr +cz1 +d=0 (20)
axy+byr +cz1+d=20 (11)
ary +by1 +cz1 +d=0 (12)

All these equations are linear equationsuim, ¢, d. Eliminating a, b, ¢, d
from these equation will give the required equation of trenpl Hence,
we have the required equation as,

r y =z 1
rroyr oz 1) 0
Ty Y2 22 1 '
z3 ys z3 1

Using the elementary row transformatior®, — Ry, R3 — R, Ry — Ra,
we get

r—x1 Yy—-y1 z—2
z1 Y1 21
T2 =21 Y2 —Y1 22— Z21
T3 —T1 Ys—Yi1 23— 21

r—T1 Y-y <z—z
=|r2—21 Yo2—y1 22—21|=0.
T3 —T1 Ys—Y1 23— Z21

O O = O
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Equivalently, we can also use (&)et the required equation of the plane be
a(r —x1) +b(y —y1) +c(z — z1) = 0.

Since(xa, y2, 22), (x3,y3, 23) lie on this plane, they satisfy the above equa-
tion. Thus,

a(za —x1) +b(y2 —y1) +c(za —21) = 0,
a(xs —x1) +blys —y1) +c(zz3 —2z1) = 0. (13)

Solving (13) using Cramer’s rule, we get

a b c
Y2 —Yy1 22— 21 T2 —21 Y2 — Y1
Ys— Y1 23— 21) r3—T1 Y3 — Y1)

22— 21 T2 — X1
23— 2 -'EB_Z'I)

Substituting these values of b andc, we get the equation of plane as

r—r1 Y—Yy1 22—z
To—T1 Yo—y1 22—21|=0.
T3 —T1 Ys—Y1 =3 — 21

6.10 Systems of Planes

The following are the equations of systems of planes coimigione or two
parameters.

1. We know that two planes,;z + b1y + ¢1z + d; = 0 and
ag + bay + oz + dy = 0 are parallel if and only it = 2; =4,
Hence a plane parallel to the plame+ by + cz +d = 0 is glven by
axr+by+cz+k =0,k € R. For different values ok, we get the set
of planes, each planes is parallel to given plamne-by +cz+d = 0.
Herek is called as the parameter. Thusc+by+cz+k = 0|k € R}
represents the system of planes parallel to the given plareby +
cz+d=0.
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2. Let L be a line withd.r.s a, b, c. Then the equation of a plane per-
pendicular to the lind. is of the formax + by +cz +d =0, d € R.
For different values ofl, we get set of planes, each plane is perpen-
dicular to the given lind.. Thus

{ax + by + cz+d =0|d € R}

represents the system of planes perpendicular to the ginerll
with d.r.s.a, b, c.

3. We know that the equation of a plane passing through thet poi
(x1,y1,21) is of the forma(z — z1) + b(y — y1) + c(2 — 21) =0,
wherea, b, ¢ are real numbers not all zero simultaneously. Suppose
¢ # 0. Then the equation reduces to
Az — 1)+ By —y1) + (2 — z1) = 0, whereA = ¢, B = L
For different values ofA and B, we get a set of planes, each plane
of the set passes through the given pdint, y;, z1). Here A and B
are two parameters. Hence the equatidn — z1) + b(y — y1) +
¢(z — z1) = 0 represents the system of planes passing through the
point (x1,y1, 21), where the required two parameters are the ratios

of the coefficients, b, c.

4. Consider two planes;x + b1y + c1z + dp = 0 andasx + boy +
coz + do = 0 which intersect each other in a line. Now consider the
locus given by the following equation

(amrx+by+ciz+dy) +k(asx+boy+cez+ds) =0,k € R. (14)

Rewrite this equation as

(a1 + kag)x + (b1 + kbo)y + (c1 + kea)z + (dp + do) = 0.

This is a linear equation im, y andz. Hence, it represents a plane.
Thus equation (14) represents a plane. For different valtigswe
get a set of planes. It is easy to see the plane given by (14gpas
through the line of intersection of the plangs:+b1y+c1z+d; = 0
andasx + boy + coz + do = 0. Hence the equation

(a1 + by + c12 + dy) + k(asw + boy + coz +da) =0
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represents the system of planes through the line of intiéoseaf the
planesa;z 4+ b1y + 1z + dy = 0 andasx + boy + coz +do =0, k
being the parameter.

6.10.1 Two sides of a plane

It is clear that each plane divides the space into two parts, called the two
sides or two half regions of the space determinedbywo pointsA and

B, not onm, lie on different sides ofr if and only if the segment AB
intersectsr in a unique point, otherwise they lie on the same side.of

Theorem 6.3 Two pointsA(x1,y1,21), B(z2,y2, 22) lie on the same or
different sides of the planer + by + cz + d = 0, if the expressionaz; +
by1 + cz1 + d and axs + boy + coz + d are of the same or different signs.
Proof. Let A(z1, y1, 21) and B(x2, y2, 22) be any two points which are not
on the plane

ax +by+cz+d=0. (15)

Let the lineAB meet the planél5) in the pointP. SupposeP dividesAB
in the ratio\ : 1. If A is positive, thenP divides AB internally; andP
divides AB externally, if X is negative. By section formula, we get

P()\$2+SC1 Ay2 + 1 )\22-1-21)
A+1 7 A+1 7 x+1 7
P lies on the plan¢l15). Coordinates of’ satisfy the equatio(lL5). There-

fore a(2ZEEL) + p(M2EL) 4 ¢(22821) 4 d = 0;ie.,

(az1 + by + cz1 + d) + Maza + by + czo + d) = 0.

From this equation, we get

_ _a$1+by1+62’1+d

) 16
axo + bys + czo +d (16)

This shows tha# is negative or positive according as; + by; + cz1 +
d and axs+bys+czo +d are of the same or different signs. Suppoese+
by1 + cz1 +d and axs + bys + czo + d are of the same signs. Therefore the
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axy+by; +cz +d

axy +bys +-czo +d _ _
in this caseP divides AB externally. Henced and B lie on the same side

of the plang(15).
If ax1 + by + cz1 + d andazs + bys + czo + d are of the different signs,
then A and B lie on the different sides of the plari&5).

is positive. Hence by16), A is negative. Therefore

Example 6.1 Show that the origin and the poif®, —4, 2) lie on the dif-
ferent sides of the plane+ 3y — 5z +7 = 0.

Solution. Let « denote the expressian+ 3y — 5z + 7. The value of the
expressiorw at the origin isO + 3(0) — 5(0) + 7 = 7 > 0. The value of
the expressiow at the point(2, —4, 3) is

2+ 3(—4) — 5(3) + 7 = —18 < 0. The values of the expressions have
different signs. Hence the origin and the pojat—4, 3) lie on different
sides of the plane + 37 — 52 + 7 = 0.

6.11 Length of the perpendicular from a point to a plane.
Consider the equation of the plane in the normal form viz.
lr+my+nz=p an

where p denotes the length of the perpendicular from the origin ® th
plane; and, m, n ared.c.s. of the normal to the plane.

The equation of a plane parallel to the plane (17) and paskioggh
the pointP(x1, y1, z1) is given byl(x —x1) +m(y —y1) +n(z —z1) = 0.
i.e.,

lx +my+nz = py, (18)

wherep, = lz1 + my1 + nz.

Let OK K' be the perpendicular from the origin to the two parallel
planes meeting them ik and K. If p; > 0 then K and K’ are on the
same side of the plarie + my + nz = 0 so thatOK = p andOK’ = p;.
Draw PL perpendicular fronP to the plane given by (17) (see figure 6.8).
We havePL = K'K = OK'—OK = p; —p. P lies on the plane given by
(18). Aslzi+myi;+nzy = p1,we getPL = lx;+my;+nz;—p. Thus the
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required length of the perpendicular frafto the plan€éxz +my+nz =p
is |PL| = |lz1 + my, + nz — p|.

If p1 < 0thenK and K’ are on the opposite sides of the pldnet+
my+nz = 0sothatOK = pandOK'’ = —p;. Then the distance between
the two planes i$—p1) + p = p — (lz1 + my1 + nz1). Thus, we get the
distance between the planes|as + my; + nz; — p|.

Figure 6.8

Remark 6.11 The length of the perpendicular drawn from the point
laxy + byy + ¢z, + d|

The normal form of the planex + by + cz +d =01is

(x1,y1,21) tothe planewx + by + cz +d =01is

ar +by+cz —d
Va2 +b%+c? Va2 + 02+ 2’

the plus or minus sign being taken in the denominator acegres d is

negative or positive hence 1§§.10.1) the length of the perpendicular from
b 1+d b 1+4+d

Ptotheplandam1+ y1 + czl + = laz1 + byy + cz1 + \

+va? 4 0% + 2 a? + b2 + ¢?

Example 6.2 Find the distance of the poiiit, 1,4) from the plane

3r —6y+ 22411 =0.

Solution. By Remark 6.11, the distance of the poirtl, 1,4) from the
3(1) — 6(1) +2(4) + 11| 16

VEPF P+ @7 T

plane3z — 6y + 2z + 11 =0 is|
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6.11.1 Bisectors of angles between two planes

To find the equations of the planes bisecting the angles leeatihe planes
a1r + b1y + c1z +dy = 0andasz + by + coz + dy = 0.

Let P(z,y, z) be a point on the plane bisecting the angle between the twc
given planes. Then the perpendicular distances ffoto the two given
planes should be equal. HenceRgmark 6.11,

a1x+b1y+clz+d1|_|a2m+b2y+022+d2

Vai+ bt +c2 Va3 + b3+ c3

Thus the equations of the bisecting planes are

ary +by; +czl+dp ia:vg + bys + c2z2 + do
Va2 + b2+ Va3 +b+dd
Of these two bisecting planes, one bisects the acute andlethar obtuse
angle between the two given planes.

Example 6.3 Find the equations of the planes bisecting the angles be:
tween the planes + 2y + 2z = 9 and4x — 3y + 12z + 13 = 0. Also
specify the one which bisects the acute angle.

Solution. The equations of the two bisecting planes are

:r+2y+2z—9_i4a:—3y+12z+13'

V12 422 4 22 VAZ 4+ 3241227
i.e., z+2y§2z79 — 4x73yY?)12z+13 and x+2y§2279 _ _4x73yT3122+13;i.e

2 + 35y — 10z = 156 and25x + 17y + 62z = 78.

To find which plane bisects the acute angle between the gilaaeg, for
this find the angle between+ 2y + 2z = 9 and one of these bisecting
planes, say + 35y — 10z = 156. Let 6 be the angle between the planes

x4+ 2y + 2z =9 andx + 35y — 10z = 156.
cosf — 1(1)4+2(35)+2(—10) _ _17
V12427422 /12435%+(—10)2 V1326
tan 6 = Y197 > 1 Thereforey > 45°. Hence the plane + 35y — 10z =
156 bisects the obtuse angle between the given planes. Thigesnjlat
the other plane25x + 17y + 62z = 78 bisects the acute angle between the

given planes.

. From cos#, we find
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6.12 Joint equation of two planes
Consider the equation of two planes

ax+biy+cz+di =0 (19)
asx + boy + coz + dy = 0. (20)

Then the joint equation of these two planes is given by
(a1 + b1y + 12 + di)(agx + bay + caz + d2) =0 (21)

Note that if (21, y1, z1) lies on either the plane (19) or the plane (20), then
eitheraix1 + byy1 + c121 + dy = 0 0r agxy + boyy + coz1 + do = 0.
Therefore(alm + biy1 + c121 + d1)(a2x1 + bay1 + c221 + d2) = 0.
Hence the pointz1, y1, z1) lies on the locus given by (21). Conversely if
the point(z1, y1, 1) lies on the locus given by (21), thémy,y1, 21) lies

on either the plane (19) or the plane (20). Thus we say that

(a1z1 + b1y1 + c121 + dy)(agw1 + bayy + c221 +d2) =0
is the joint equation of the given two planes.

Theorem 6.4 The necessary and sufficient condition that the homogeneous
second degree equatian® + by? + cz? + 2fyz + 2gzx + 2hxy = 0 rep-

a h g
resents two planesid b f|=0.

g [ c
Proof. We suppose that the given equation

az? + by? + ¢2® + 2fyz + 2gzx + 2hay =0 (22)

represent two planes. Let the equation of two separate plame

lx +my+nz=0andl'z +m'y +n'z = 0.

As the equation (22) is a homogenous equation, there carppetacon-
stant terms in the separate equations of the plane. We have

ax? +by?+c2? 2 fyz+2gzx+2hxy = (le+my+nz)(l'z+m'y+n'z).
Comparing coefficients,we get
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a=MNl',b= X mm',c=nn/,2f = Anm/ + mn’, 29 = vin' + nl’
2h = vlm’ + ml’

2a 2h 2g w4+ Im/ +ml’ In' +nl
12h 20 2f| =X |Im/ +ml' mm/ +mm’ nm! + mn/
29 2f 2c ' +nl"  nm'+mn’  nn' 4+ nn
I 7' 0 I m n a h g
=X|m m 0/ x|l m n| =0 Therefore, & [h b f| =0
n n 0 0 0 0 g f ¢
a h g
Thus,|h b f| =0
g f c

Conversely, suppose thatc + 2fgh — af? — bg> — ch? = 0.
DenoteS = ax? + by? + c2% + 2fyz + 2gzx + 2hxy
Now regardinga.S as a polynomial inc and going through the process of
completing the square, we get
aS = (ax + hy + gr)% + aby® + acz® + 2afyz — (g2 + hy)?
-.aS = (ax + hy + gz)? + (ab — h?)y? — 2(gh — af)yz + (ac — g*)2?
- aS = (ax + hy + gz)? + (Cy* — 2Fyz + B2?),
whereC = ab — h?, F = gh — af, B = ac — ¢°.
.. BC — F? = a(abc + 2fgh — af? — bg?> — ch?).
As, (abc + 2fgh — af? — bg?> — ch?) = 0, .. BC — F? = 0. Hence for
somer andt, Cy? — 2Fyz + Bz? = —(ry + tz)%.
ThereforeaS can be expressed as a difference of two squares and so h
linear factors. Thus, if, # 0 and if (abc + 2fgh — af? — bg? — ch?) = 0,
then the given equation (22) represents two planes.
If a =0butd # 0orc## 0, there is a similar argument. df=b=c=0
then2fgh = 0. It gives at least one of,g,h = 0; this is sufficient for
2fyz + 2gzx + 2haxy to factorize.

Remark 6.12 If 8 is the angle between the planes represented by the equa
tion (22); and ifll’ + mm’ + nn’/ # 0, then
V(mn' —m/n)2 + (nl' — n'1)2 + (Im/ — I'm)?
W+ mm' +nn/
22+ 2+ h?—ab—bc—ca
N a+b+c '

tanf =

s tand
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The planes will be at right anglesdf+ b + ¢ = 0.

Example 6.4 Show that the equatiot®z? —2y% —622 —22y+Tyz+622 =

0 represents a pair of planes. Also find the angle between them.

Solution. Comparing12z? — 2y? — 622 — 2xy + Tyz + 6z = 0 with

ax? 4+ by? + c2® + 2fyz + 2gzx + 2hay = 0,

we haven = 12,6 = (—2),¢ = (—6),2h = (—20),2f = 7,29 = 6.

- abc +2fgh — af? — bg? — ch?

= 12(=2)(=6) +2(3)(3)(~1) — 12(3)* — (=2)3% — (=6)(~1) = 0.

Hence, the given second degree equation represents a jpianes.

Let 0 be the angle between two planes. Then

2\/f2+92+h2—ab—bc—ca o 2\/%2+32+(*1)2*12(*2)(*6)*(*6)(12)
atbtc = 12+(—2)+(-6)

C.tanf = %ﬁ. It gives,cos @ = 5. Thus6 = cos ™ (55).

tanf =

6.13 lllustrative Examples

Example 6.5 Find the equation of the plane passing through the intersec-
tion of the planes: + y + z = 6 and2z + 3y + 4z + 5 = 0 and the point
(1,1,1).

Solution. The required plane passes through the line of intersecfitimo
given planes. Therefore its equation is of the form

2z +3y +42+5)+ k(r+y+ 2z —6) =0for somek € R.

Also itis given that the plane passes through the gint 1). Coordinates

of these point satisfy the equatigh.12.1), we getk = %. Substituting
k= %, we get equation of the required plane2as + 23y + 26z —69 = 0.
Example 6.6 Find the equation of the plane which is perpendicular to the
plane5z 4 3y + 6z + 8 = 0 and which contains the line of intersection of
the planes +2y+32—-4=0,2z+y—2+5=0.

Solution. The required plane passes through the line of intersecfitimeo
given planes. Therefore its equation is of the formed

(x4+2y+32—4)+k(2r+y—2+5) =0for somek e R (23)
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d.r.s of the normal to the plane (6.23) ate+ 2k,12 + k,13 — k. The
required plane is perpendicular to the plane-3y+62z+8 = 0. Therefore
5(142k) +3(2+k) +6(3 — k) = 0. From this equation, we gét= =22.
Substitutek = ‘ngin (5.12.2) we get the required equation of the plane as
5lz + 15y — b0z + 173 = 0.

Example 6.7 Find the equations to the planes through the line of intersec
tion of the planes: + 2y + 22 —4=0,2c +y — 2+ 5 =0 and

(a) parallel toz-axis (b) parallel toy-axis and(c) parallel toz-axis.

Solution. The required equation of the plane passes through the line o
intersection if the given planes. Therefore its equaticof ihe form

(x+2y+22—4)+k(2r+y—2+5)=0for somek e R (24)

d.r.s of the normal to the plane (6.24) atet 2k,2 + k,2 — k

(a) d.r.s of thex —axis arel, 0,0. The plane (6.24) is parallel to— axis.

Hence normal to plane (6.24) is perpendicularte azis. 1(1 + 2k) +

0(2+ k) +0(2 — k). It givesk = . Substitute this valué in (6.24) we
get the equation of the plane parallebte- azis as3y + 5z — 13 = 0. (b)

By the similar argument, the equation of the plane paratiel + axis is
3z — 4y + 14 = 0. (¢) The equation of the plane parallel to— azis is

5z +4y+6 =0.

Example 6.8 Show that the distance between the parallel pl@nes2y +
z+3=0anddxr —4y +2z+5=0is ¢.

Solution. The distance between two parallel planes is the distancayof a
one point from one plane to other. The pointl, 1, —3) lies on the plane

2x — 2y + z + 3 = 0. Hence the distance between two parallel planes =
perpendicular distance frotR to the planelx — 4y + 2z + 5 = 0. The

perpendicular distance equﬂ%l)_4(1)+2(_3)+5| = %. Thus the distance

T2 (—a)2+22
between given two parallel pIanes%)is

Example 6.9 A variable plane which remains at a constant distabece
from the origin, the cuts to coordinate axes@atB and C Show that the
locus of the centroid of th&\ ABC' is 22 + y2 + 22 = p2.
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Solution. Let the equation of the variable plane e + by + cz + d =
0, which is at a distanc8p from the origin. Then by the perpendicular
distance formula,

b d . d?
Va2 + b2+ 2 a? + b2 + 2

Suppose the plane meets thgy and z-axis atA, B and C' respectively.
Then, we haved(=2,0,0), B(0, 5¢,0), C(0,0, =%). Let G(z1,y1, 21) be
the centroid of thehA ABC. Then

=4 +0+0 0+ 7240 0+0+ =4
T = —mm—mMM— = 21 = .
1 3 » Y1 3 y #1 3
Squaring and adding these equations, we get
d2
oty +af = =7’

9(a? 4+ b? + ¢2)
Hence the locus of the centroid of theABC'is 22 + y? + 22 = p?.
Or

Let the equation of the variable plane et my + nz = 3p. Suppose the

plane meets the, y andz-axis atA, B andC respectively. Then, we have

A(22,0,0), B(0,22,0), C(0,0,2). Let G(z1,y1,21) be the centroid of

the AABC. Thenz; = %,yl = £,z1 - Squaring and adding these
m n

equations, we get? + y? + 22 = p?. Hence the locus of the centroid of

the AABC is 22 + y? + 22 = p2.

Example 6.10 The plandz +my = 0 is rotated about its line of intersec-
tion with the planez = 0 through an angle.. Prove that the equation of
the plane in its new position iz + my + vI? + m? tan a))z = 0.
Solution. Let 7 be the plane obtained by rotating the pldme+ my = 0
about its line of intersection with the plane= 0 through an angle.. Then
the equation of the planeis of the form

lx+my+kz=0 for somek € R. (25)
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Note that angle between the planand the planér +my = 0 is . Using

_ 2+m?
angle between two planes,we get o = NEET RN

(l2+m2)2
+m2+k2)(l2+m2) .
From this equation,we gét= 4+/I2 + m?2 tan «. Substitute this value of
k in (6.25), we havélx + my + V12 + m? tan «)z = 0.

2
cos”a =

Example 6.11 Find the locus of a point which is equidistant from the two
planesz + 2y + 2z =3 and3z + 4y + 122 + 1 = 0.

Solution. Let P(z1, 41, 21) be a point which is equidistant from the given
two planes.Then by the perpendicular distance formulaave h

1+ 2y1 +221 -3 31 +4y1 + 1221 + 1

V12 422 422 V32 42 4 122
) 1+ 2y1+ 221 — 3 B i3x1+4y1+1221+1
" 3 B 13

2z + Ty — bz — 21 =0 11zy + 19y; + 1327 — 18 = 0.

Hence the locus of a point which is equidistant from the giptmes is
20 +Ty —52—-21=00r1lz+ 19y + 132 — 18 = 0.

Example 6.12 Find the joint equation of the planés + 3y — z = 0 and
r—y+52=0.

Solution. The joints equation of given two planes(&: + 3y — z)(z —y +
5z) = 0. On simplification, we ge2z? —y% — 522 + 16yz + 920 +xy = 0

6.14 Exercise

1. Find the equation of the plane passing through the @i 5) and
perpendicular to the line whose d.r.s. are 3,-2,6.

2. Find the equation of the plane passing through the point
(1,—3,—4) and parallel to the planéz + 2y — 3z = 5.

3. Find the distance from the point P to the planavhere

(@ mis2x+y—2z=4,Pis(2,3,5)
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10.

11.

12.

13.

14.
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(b) misdx —3y — z=4,Pis(4,2,3)
(c) misbxr — 3y +22=6,Pis(3,—1,2)

. Find the locus of a point the sum of the squares of whosartiss
fromthe planes +y+2=0,z —z=0andz — 2y + 2z =0is 9.

. Show that the equatior? — y? +222 +yz + 320 +z+y+2=0
represents a pair of planes. Also find the angle between émegl

. Show that the points-2, 2, —1) and(1, —1, 1) lie on different sides
of the planer — 2y + 2z + 5 = 0.

. Find the equations of the planes bisecting the angleseeetvthe
planesr + 2y + 2z — 3 = 0 and3z + 4y + 12z + 1 = 0 and specify
the one which bisects the acute angle.

. Find the equations of planes parallel to the plane 2y + 2z = 3
whose perpendicular distance from the pdint2, 3) is 1.

. Find the perpendicular distance between the paralleleglar —
2y +z+6=0and4x —4y +2z+5=0.

Find the equation of the plane passing through the gairix, —1)
and parallel to the plar@r — 5y + /72 + 5 = 0.

Find the equation of the plane passing through the gbiat 1) and
containing they-axis.

Find the equation of the plane passing through the lingefsection
of the plane®z+y—2+5 = 0 = z+2y+2z—4 and is perpendicular
to the planéz + 3y + 62 + 11 = 0.

Find the equation of the plane through the po#8, 1) and perpen-
dicular to the line joining the point®, —1, 3) and(4, 2, —1).

Find the equation of the plane passing through the lingefsection
of the planeQx+y— 2z = 3andbsz —3y+42+9 = 0 and is parallel
to the line whose d.r.s.ate 4, 5.
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15

16

17.

18.

19.

20.

21.

22.

23.

24.

25.

. Write the equations of the following planes:

(a) parallel to theX Z-plane through2,4, 5)
(b) parallel to theX'Y-plane and 5 units from it.

. Find the locus of a point which is always at a distaf%mnits from
the planer +y + 2z +1 = 0.

Find the locus of a point whose distance from the origir isnes
its distance from the plar: + 3y — 6z = 2.

Find the equation of the plane passing through the lingefsection
of the planest + 2y + 3z +4 =0 and4z + 3y + 22+ 1 = 0 and
passing through the origin.

line of intersection with the plarr+-3y—4z+5 = 0. Show that the
equation of the plane in its new position2&z + 5y — 4z + 35 = 0.

From the poinP(a, b, ¢) perpendiculard®M and PN are drawn to
the Z X -plane andX'Y -plane. Find the equation of the pla@é/ N,
whereO is the origin.

Find the perpendicular bisecting plane of the segrtizint —3) and
(0, —4,2).

Find the equation of a plane which bisects the acute dwailgeen
the planex — y + 2z + 3 =0 and3z — 2y + 6z + 8 = 0.

Determine whether the following points lie on the sande sif the
plane3z — 2y + 4z =10 : (1, -1, 2), (0,1,1) and(0, 0, 2).

Find the equation of a plane which bisects the angle leatvilee
planes3z — 6y + 2z + 5 = 0 and4x — 12y + 3z = 3 which contains
the origin.

Determine which of the following equations represeinspgzt planes.
Also, find the angle between the pair if the equation reptssepair
of plane.

The plane: — 2y + 3z = 0 is rotated through a right angle about its
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(@) 322 — 10yz + 5z2x — 6zy + 2 — 2y =0

(b) yz+ zx + 22y +2x+5=0

€ 22412+ 22 +4yz+ 220+ 2xy+x—2y+1=0

(d) 222 —2y? — 322 4+ Byz — 5zx + 3wy +4x — Ty +92 — 6 = 0.

26. Show that the planéixr — 8y + 13 = 0 bisects the obtuse angle
between the planel: + 4y — 5z + 1 = 0 and5z + 12y — 13z = 0.

27. Show that the planesr — 5y + 2 = 0, 6z + y — 2z = 13 and
11y — 2z = 17 pass through one line.

28. Find the condition that the planes= cy + bz, y = az + cx and
z = bx + ay may pass through one line.

6.15 Answers

1) 3z — 2y + 62 = 30 (2) 62 + 2y — 32 = 12 (3) (a) X2 (b) 2L
)

c 8\1/5_§ (4) 3x2+3y2+322+2$2—27:0(5)9=COS_1(§)

7) 2x+Ty—5z = 21;11x+ 19y + 31z = 18 which bisects the acute angle
8) z—2y+2z =62—2y+22=0(9) £ (10) 2z —5y+7z =8—V7
11) z — 2 =0 (12) 51z + 15y — 50z + 173 =0

13) 2z + 3y — 42 = 11 (14) 7Tz + 9y — 102 = 27

15) (a)y=4(b)z£5(16)z+y+2z=6x+y+2+8=0

17) 322 + 8y + 3522 — 36yz — 2420 + 120y — 8z — 12y +2424+4 =0
18

25) (a) and (d) represent pair of planes. Angles ares~! —fm and
1 =3

Ccos™ \/—7—0
(28) a? + b? + % + 2abc = 1. Hint: For some\ andy, we have
(x —cy —bz) + ANy — cx — az) = p(z — bx — ay).



Chapter 7

Lines in 3D

7.1 Introduction:

The reader has already been introduced to the study of lirtesde dimen-
sions. In this chapter we shall study the condition that tivemglines are
coplanar and skew lines. Note that in the Section 7.2 we takedvision
of the known results.

7.2 Equations of a Line:

We know that the intersection of two planes is a line. Conside inter-
secting planes

sz +biy+cz+d = 0 @
asx +boy +coz+dy = 0 (2)

Let L be the line of intersection of the planes given by (1) and (2).

Any point in L is common to both the planes. Hence its coordinates will
satisfy the equations (1) and (2). Also if the co-ordinatiea point satisfy
both equations (1) and (2), then it lies in the liheHence two equations (1)
and (2) taken together are the equations of the linéhere equations are
said to be the general equations of a line. Thus, a straightdirepresented
by two equations of the first degreedny, z.

7.2.1 Symmetrical form of the Equations of a Line:

Equations of a line passing through the given polfit,, y1, z1) and hav-
ing direction cosine$, m, n are

Tom Y-y _Z—2 3)

l m n
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Each ratio equals\/(%"lcl)\j;giy;fjr)zj(zle)2 = t (say). Thus, |t| gives

the distance between the poifit, y, z) and the point(zq,y1,21) andt
is called as directed distance frdmy, y1, 21) to (x, y, z). Observe that we
can rewrite (3) as

r=x1+Ilt,y=y1 + mt,z =z +nt 4)

Equations given by (4) represent the co-ordinates of anytjpoi the line at
a distance from the pointA(x1,y1, 21). equations given by (4) are called
parametric equations of a straight line.

Remark 7.1 From the equations given by (4), we observe tha the
actual distance of the poift(z, y, z) from the given pointd(x1,y1, 21),
becomes, m,n are d.c.s. of the lin€l? + m? +n? = 1).

However, ifl, m, n are given to be proportional to the direction cosines
of AP, thent will be proportional to the distancé P. Thus if instead of the
direction cosine$, m, n the direction ratios:, b, ¢ are given the equations
of the line are

r—r Y- 22—
a b ¢

This form is known as symmetrical form of equations of a line.

7.2.2 Equations of a Line Passing Through Two Points

Let the line L pass through two pointsl(z1,y1, 21) and B(za, y2, 22).
Let P(x,y, z) be any point on the liné.. The direction ratios oAP are
x—x1,y — Y1,z — 21, and ofAB arex; — x9,y1 — yo2, 21 — 22. Since the
line AP is parallel toAB, d.r.s of AP are proportional to the d.r.s. ¢fB.

r—Tr Y-y _ 2—2

ry—my 21— 2 21— 2

are the required equations of the lidepassing through the points
A(x1,y1,21) and B(zz, y2, 22).
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7.2.3 Transformation of the equations of a line from the
asymmetric form to the symmetric form.

Let the equations of a liné in asymmetrical form be
ax+biy+ciz+di =0, asxr + boy 4+ coz + do = 0.

To transform this asymmetrical form to the symmetrical fomre must
know the coordinates of a point on the lideare d.r.s. of the line.
The following illustrative example will make the procedwlear.

Example 7.1 Find the symmetric form of the equations of the line
z+y+2+1=042r+y—22+2=0.
Solution: Let L be a line whose equations are given by
r+y+z+1=04r+y—22+2=0 (1)

To transform the equations of the line into the symmetrierfofirst we
find co-ordinates of a point on the line We may consider, for the sake
of convenience, the intersection of the line with any onénefdo-ordinate
planes, say = 0, so that

r+y+1=04r+y+2=0 (44)

Solving equations given by (ii) simultaneously, we get thguired point
as(=t, =2,0) . Next, letl, m, n be the d.c.s. of the ling. The lineL lies
in both the planes given by (i). Hence it is perpendiculah®riormals of
the two planes; and as d.r.s. of the normals to the planes +z+1 =0

and4z +y —2z+2=0arel, 1,1 and4,1, —2.

SAd+m4+n
4d4+m-—-2n =

by cramer’s rule, solving these equations faw, n we have

146 Algebra and Geometry

l m n . l m n

376 31T 2T
So that d.r.s. of the required line are—2, 1. Hence the equations of the
. . . T+ 1 +2
line L in symmetric form arel—3 = y_23 = %

7.2.4 Angle between a line and a plane:
To find the angle between the line

r—r1 Y—Yy1 2—2

L
l m n

and the planev : ax + by + cz + d = 0. If 4 is the angle between the line
L and the plane, then the angle between the likeand the normal to the
planea is 5 — 0 (see fig. 7.1).

Fig. 7.1

The d.r.s. of the lind. arel, m,n while d.r.s. of the normal (saf B) are
a,b, c. Hence,

T al +bm +cn
cos(——9> =
2 Vet tE VRt
. l+b
i.e.sinf = ab+om+en asl>+m?+n?=1.
va? 4 b2 + 2

The line will be parallel to the plane #f= 0, i.e. if al + bm + ¢n = 0.
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[llustrative Examples

Example 7.2 Find the equations of a line throudh-2, 3,4) and parallel
to the planeQx + 3y + 42 = 5 and3z + 4y + 5z = 6.

Solution: Let L be a line passing through the poifit—2, 3, 4) and parallel
to the planes

a1 2x+3y+4z=>5and ay : 3z + 4y + 5z = 6.

d.r.s. of the normal to the plang are2, 3,4; and
d.r.s. of the normal to the plane are3, 4, 5.
Given that the lind. is parallel to the planes; andas, henceL is perpen-
dicular to their normals, we gétz + 3b + 4c = 0 and3a + 4b + 5¢ = 0,
wherea, b, ¢ are d.r.s. of the lind.. Solving there equations far, b, c we
get{ = _% = {. Therefore d.r.s of the lind are1,—-2,1. Hence its
2 y-3 z-4

-2 17

. T+
equations are 1

Example 7.3 Find the equations of a line joining the poirfts2, 1, 3) and
(3,1,-2).

Solution: Let L be a line passing through the point§—2,1,3) and
B(3,1,—-2). The d.r.s. of the linel are3 — (-2),1 — 1,—2 — 3; i.e.,
5,0,—5;i.e.,1,0, —1. Equations of the lind. are

x+2 y—1 =z-3
10 =1

Example 7.4 Find the equations of the line throug8, 1,2) and perpen-
dicular to the plan@x — 2y + =z + 3 = 0. Also find the coordinates of the
foot of the perpendicular.

Solution: Let L be a line passing through the poimt(3, 1, 2) and perpen-
dicular to the planey : 2z — 2y 4+ z + 3 = 0. d.r.s. of the normal to the
plane« are2, —2, 1. The line L is perpendicular to the plane d.r.s. of L
are2, —2, 1. Equations of the lind. are
x—3 y—1 =z-2

2 -2 1

=t (say).
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Coordinates of any point on the link are (3 + 2t,1 — 2¢,2 + t). For
somet, these are the coordinates of the foot of the perpendiculancel
(3+2t,1 —2t,2 +t) lies on the plane.

23 +2t) —2(1-2t)+ (24+1t)+3 = 0iedt+9=0.

Hence,t = —1 and the coordinates of the foot of the perpendicular are
(1,3,1).

Example 7.5 Find the distance of the poifit, —2, 3) from the planer —
y + z = 5 measured parallel to the ling= { = Z.

Solution: Let A(1,—2, 3) and let the lineA B be drawn parallel to the line

L: 35 =% = ¢, soastointersect the plane: z — y + z = 5 at the point
B. (see Fig. 7.2).

b

Fig. 7.2

As the lineAB is parallel to the linel, d.r.s. ofAB are2, 3, 6. Equations
of the line L are

x—1 y+2 =z2-3

= t S
5 3 5 (say)

Coordinates of any point on the linéB are(1 + 2t, —2 + 3t, 3 + 6t). For
somet, these are the coordinates Bf But B lies on the plane.

S (L420)— (—2430)+ (346t = 5.'.t:—é.
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Coordinates of3 are (2, =12, 2) . Hence, the required distance is

O RN

Example 7.6 Find the length of the perpendicular drawn from the point
(5,4 —1)tothe linei;! = ¥ = £,

Solution: Let A(5,4,—1); and letB be the foot of the perpendicular from
Atothe line

r—1 y =z
L: = —_- = — =
5 g =5 =t ()

(see Fig. 7.3)

Coordinates of any point on the lineare (1 + 2t,9t, 5t). B lies on the
line L, for somet these are the coordinates Bf Now d.r.s. ofAB are
1+2t) =59t —4,5t+1,i.e. 2t — 4,9t — 4,5t + 1. d.r.s. of L are
2,9,5. AB is perpendicular td..

5202t —4) +9(9t —4) +5(5t + 1) = 0.

St

_ 39 p(188 351 105
1107 1107 110’ 110

Required length of the perpendicular,

188 2 /351 2 /195 2 /231990
AB—\/(m‘5) +<m‘4> +(m“> =0
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Example 7.7 Show that the line-— T _¥=5 _ 273 intersects the

3
line5x—3y+2—10 = 0;2x+ 7y —42z—16 = 0. Also find the coordinates
of the point of intersection.
. r—7 y—>5 z-—3
Solution: Let Ly : = = ; and
by 3 2
Lo:bx—3y+3—-10=0; 2v + 7y —4z — 16 = 0.

Coordinates of any point on the lideare (7 + 4t, 5+ 3t, 3+ 2t). Suppose
the line L, intersects the plang: — 3y + 2z — 10 =0 at P.

For somet, let the coordinates aP be (7 + 4¢,5 + 3¢, 3 + 2t). But P lies
on the plan&xz — 3y + z — 10 = 0. Therefore5(7 + 4t) — 3(5 + 3t) +

(3 + 2t) — 10 = 0. From this equation, we get= —1. Therefore, we get
P as(3,2,1). If the coordinates of satisfy the equation of another plane
2x + Ty — 4z — 16 = 0, then we say that the lings; and L intersect.

Now 2(3) + 7(2) — 4(1) — 16 = 0.

Coordinates of satisfy the equation of the plae + 7y — 4z — 16 = 0.
Hence the lined.; and L, intersect; and the coordinates of the point of
intersection ar¢3, 2, 1).

Example 7.8 Find the equation of the plane containing poit7, —7)

. x+1 y—3 z42
and the line 3 =5 =1
Solution: Let « be a plane containing the poiAt 0.7, —7) and the line
x+1 y—3 =z+2

-3 2 1

Note that the pointB(—1, 3, —2) lies on the line, and hence lies on the
planea. d.r.s. of the lineAB are0 — (—1),7—3,—7—(—2); i.e; 1,4,—5
and d.r.s. of the lind. are —3,2,1. Let a, b, c be d.r.s. of the normal to
the planex. Line AB and[L lie on the planey, therefore both the lines are
perpendicular to the normal. Therefoser4b—5¢ = 0 and—3a+2b+c =
0. Solving these equations far b andc.

L:

a b ¢ . a b c

Moottt
Now, d.r.s. of the normal to the plarearel, 1, 1. The required equation
ofthe planexis1(z —0)+1(y —7)+1(2+7) =0; ie.x+y+2=0.
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7.3 Coplanar Lines:

7.3.1 Condition for a line to lie in a plane:

To find the conditions for the ling : 2 ; TL_Y 70 27 A e

inthe planex : az + by +cz+d=0. " "

The line L lies in the planex if and only if every point on the line
lies in the planex. Now, the coordinates of any point on the lideare
(x1 + lt,y1 + mt, z; + nt). These coordinates satisfy the equation of the
planea.

coalzy + 1) +b(yr +mt) +c(z1 +nt) +d =
co(axy by + ez +d) + (al +bm+en)t =

This equation is true for every value af This is possible if and only if
ax1 + byr + ¢z1 +d = 0 andal + bm + en = 0; which are the required
two conditions. Hence a line will lie in the plane if and onfithe point

(x1,y1, 21) lies in the plane and the normal is perpendicular to the line.

Remark 7.3.1From the conditions for a line to lies on a plane, it is easy to
see that the general equation of a plane containing the line

r—x1 Y-y -2

l m n

isa(x —x1) + by —y1) + ¢(z — z1) = 0, whereal + bm + cn = 0.

. 8 — .
Example 7.9 Show that the linez + 10 = Ty = z lies in the plane

x+2y+3z=6.

Solution : The parametric equation of the lideis x = ¢ — 10,y = 8 —
2t, z = t. Hence, the general point on lideis given by(t — 10,8 — 2¢, t).
Note that it satisfies the equation of the plane 2y + 3z = 6. Thus, the

: 8 — L
linexz +10 = Ty = z liesin the planer + 2y + 3z = 6.

or
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Solution : Let L : x + 10 = S_Ty = z. The pointA(—10, 8,0) lies on the
line L and d.r.s. ofL arel = 1,m = —2,n = 1. d.r.s. of the normal to the
planex 42y +3z = 6 area = 1,b = 2, ¢ = 3. To show that the lind lies
in the plane for we show that lies on the plane andl + bm + cn = 0.
Consider—10+2 x 8+2 x 0 = 6. Coordinates ofd satisfy the equation of
the planer+2y+3z = 6. Alsoal+bm+cn = 1x1+2x(—2)+3x1 = 0.
Hence the liner + 10 = 8‘Ty = z liesin the planer + 2y + 3z = 6.

7.3.2 Condition for two lines to be coplanar:

To find the condition that the two given lines

r—n _Yy—-un o _ 2T A (i)
ll mq ni

rT—r2 _Yy—-Hh _ FTA (i4)
12 mo n9

are coplanar. By Remark 6.3.1 a plane containing the lingillipe of the
form

a(r —x1) + by —y1) + c(z — 21) = 0; D)
wherea, b, ¢ being numbers not all zero simultaneously satisfying the co
dition

aliy +bmyi +cenp =0 (iv)
The line (ii) will lie in the plane (iii) if and only if
a(ry — 1) +b(ya —y1) + (22 —21) =0 (v)
subject to aly +bmsg +cng =0 (vi)

Eliminatinga, b, ¢ from (iv), (v) and (vi), we get

T2 —x1 Y2 —Y1 22— 21
Iy my ny =0,
l2 ma N2
as the required condition for the lines to be coplanar. Whendondition
of coplanarity is satisfied, the equation of the plane caoirgithe lines (i)
T—T1 Y-y 22— 2
and (i) is given by, 13 my ny | =0.
lo ma n2
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Example 7.10 Show that the lines

x+3 y+5 z—-7 z+1 y+1 2z+41
= = and = =

2 3 -3 4 5 -1

are coplanar and find the equation of the plane containing.the
Solution. Let

— 1 1 1
m+3:y+5:z 7andL2~x+ _yt+tl 2+

Lq: : = .
L 3 —3 4 5 —1

The points(z1,y1, 21) = (=3, —5,7) and(z2, y2, 22) = (—1,—1,—1) lie
on the linesL; andL, respectively. d.r.sof; arel; = 2,m; = 3,n1 = 3;

and that ofL, arely = 4, my = 5,n9 = —1. Consider
T2 —T1 Y2 — Y1 22— 21 2 4 -8 2 4 -8
ll mi ny =12 3 -3|=|0 -1 5
lQ meo n9 4 5 -1 0 -3 15

by performingR> — Ry and R3 — 2R,. Since, the third row is 3 times
the second row, the determinant is zero. Hence the lineand L, are
coplanar. The equation of the plane containing them is
r+3 y+5 z2-7
2 3 —3 | = 0 which on expansion give&r — 5y — z = 0.
4 5 —1

7.4 Sets of conditions which determine a line

7.4.1 Number of arbitrary constants in the equations of
a straight line

Let L be a line whose equations ac”ilﬂ:e_lﬂ —YTY _ 272 These
m n
. xr —X — — z—Z
are equivalent to i L_Y y1; y— o _ L. From these equa-
m n

m

. l —1
tions, we getr = —y + LT andy = 2o 4
m m n

. lom l m . .
equations contain—, —,z; — —y; and y; — — 21 as the five arbitrary
m n m n

w These
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L om . L
constants, viz .—, —, x1, 41, 21. Hence the equations of a line involve
. . m n
five arbitrary constants.

7.4.2 Sets of conditions which determine a line:

We know that the equations of a straight line involve fouritaslby con-
stants and as such any four geometrical conditions.
We have seen equations of a line using following conditions:

1. Aline through a given point and a given line direction.

2. Aline passing through two given points.

3. Aline through a given point and parallel to the two giveanas.

4. Aline through a point and perpendicular to the two giveedi.

5. Aline through a given point and intersecting two giverefin

6. Aline intersecting two given lines and a given direction.

7. Aline intersecting two given lines at right angles.

8. Aline intersecting a given line at right angles and pagfiimough a

given point.

7.5 Skew lines and shortest distance

Definition 7.1 Two lines are said to baon coplanar or skew lines if no
plane can be drawn to contain both of them.

Therefore such lines are neither parallel nor intersectixdine is com-
pletely determined if it intersects two lines at right asgl@hus, there is
one and only one line which intersects the two given skevslateight an-
gles and the segment of this line terminated by the two skaglis known
as theshortest distance between them.
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7.5.1 Tofind the length and the equations of the line of shorst
distance between two lines

D H C
Figure 7.4

Let the equations of the two skew linds3 andC D be

r—T Yy—uy1 zZ— 2z

AB : = = (5)
ll m1 ni

CD:JI—@:?J—Z/Q:Z—ZQ (6)
l2 meo n9

Let GH be line which meets both skew linegsB andC'D at right angles
(see Fig. 7.4). The/H is the line of shortest distance between the lines
AB andC D; the lengthG H being the magnitude. Létm, n be thed.c.s..
SinceGH is perpendicular to both ol B andC' D, we have

lly + mmy +nnq = 0andlly + mmeo + nngy = 0.

Solving these two equations, we determing:, n. The shortest distance
G H is the projection ofAC on GH. Hence

GH = l(x1 — x2) + m(y1 — y2) + n(z1 — 22).

A method to determine the equations of the line of shortest dtance

The lineGH intersects the lined B andC D. Therefore there is a unique
plane determined by the lingsH and AB, also there is a unique plane
determined by the line§ H andC D. The equation of the plane containing
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the coplanar line&H andAB is

r—I1 Yy—4y1 <2— =z
l1 my ny | =0 (7)
l m n

and the equation of the plane containing the coplanar tiEsandC D is

rT—T2 Y—Y2 =2—22
l2 mo no = 0. (8)
l m n

Example 7.11 Find the shortest distance and the equations of the line of

shortest distance between the skew lines

r—1 y—2 2—-4 -3 y—4 2-5
2 3 47 3 4 5
Solution. We give two methods for the solution.
First Method. Let
r—1 y—2 z-4 zr—3 y—4 z-5
L . = = n L : = = .
1T 3 g andle: =3 1 5

Thed.r.s. of Ly and L, are 2,3,4 and 3,4,5 respectively. Liebe the line
of shortest distance betweén andL,; and letl, m, n be thed, ¢, s, of the
line L. L is perpendicular to both, andLs.

2043m+4n=0;3l+4m +5n =0

. . [
Solving these two equations férm,n, we get—1 = % = il Thus,
; 1 -2 1
thed.r.s. of the lineL are—1,2, —1 and hence d.c.s. df are—z, 75 -

A(1,2,4) andB(2,4,5) lie on the linesL; and L, respectively. The length
of the shortest distance between the lidgsand L, equals the length of
the projection of the line segmedtB on the lineL

= (z1 —x2)l + (y1 — y2)m + (21 — 22)n

1 —2 1 2
:(1_2)%+(2—4)%+(4—5)\/—6:%~
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The equation of the plane containing the lireand L is
r—1 y—2 z-4
2 3 4 |=0;ie,llz+2y—72+13=0.
1 -2 1
The equation of the plane containing the lideand L, is

r—1 y—2 z—-4
3 4 5 |=0;i.e.Tx+y—5z+7=0.
1 -2 1

Hence the equations of the line of shortest distance are

11z 42y —T7z+13=0and7z +y — 5z + 7 = 0.

Ly
A
L
/
M B Loy
Figure 7.5
Second Method.Let
) x—1 y—2 2z—-4
Ly: 5 = 3 — 1 =t and
— —4 —
Ly : x33:y4 2255:5(say).

A(1,2,4) and B(2,4,5) are points on the lined; and Ly respectively.
Let LM be the line of shortest distance betwdenand L, (see Fig. 7.5).
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Coordinates of any point on the lidg are(1+2¢t,2+3t,4+4t). For some
t, we get coordinates df. Let (2+3s,4+4s,5+5s) be the coordinates of
M for somes. Therefored.r.s. of LM are2t—3s—1, 3t—4s—2,4t—5s—1.
LM is perpendicular to botlh; andL,. It implies that

22t —3s—1)+3(3Bt—4s—2)+4(4t —5s—1) =
and3(2t —3s—1)+4(3t —4s—2)+5(4t—-5s—1) = 0

From these two equations, we @8t —38s—12 = 0 and19t—255—8 = 0.

Solving these two equatlons foands, we havet = ‘34 s = ‘4 . So that

L(Z2,-2,3 4) and M (-2, = ,‘3 ). By the distance formuIaLM \/6
3r+6 3y+4 3245

-2 1

N

Equations ofLM are

7.5.2 Length of the perpendicular from a point to a line

To find the length of the perpendicular from the paitz, v, 21) to the

givenlineL : 2% _ ¥~ b_z=n . Let Q be the foot of the perpen-

dicular from the point? on the IlneL (see Fig. 7.6).HQ is projection of
HPonthelineL. Hence, HQ = l(x1 — a) + m(y1 — B) + n(z1 — 7). By
the distance formulal P? = (21 — a)? + (y1 — 8)? + (21 — )%

Q B
Fig. 7.6

We havePQ? = HP? — HQ?. Thus, the length of the perpendicular
form the pointP on the lineL is given by
PQ* = (z1—a)+ (1 —B)°+ (21 —7)?
—[l(zy — @) +m(y1 — B) +n(z1 — )%
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Example 7.12 Find the length of the perpendicular from the point
. r—5 y+2 z2z—-6

4, — to the | = = :

(4,—5,3) to the line 3 ) 3

r—5 y+2 2-6

Solution. Let L : . H(5,—2,6) is a point on the
line L, andd.r. s of the line L are3, —4,5. Therefored.c.s.of the line L

are5f, 5} Vo Let @ be the foot of the perpendicular frof(4, —5, 3)
on the IlneL HQ= prOjectlon ofH P on the lineL.
HQ = (4 5) — f( 5+42)+ f(3 6) f By the distance

formuIaHP V19. PQ? = HP? — HQ?* = 19— 2%, Hence the required
length of the perpendicular BQ = \/E

7.6 lllustrative Examples

Example 7.13 Show that the line’=! = “£2 = =2 Jies on the plane
r+2y—2=0.

Solution. Let L :

of every point on the lind. lies on the on the plane+ 2y — z = 0, then we
say that the lind. lies on the plane. Coordinates of any point on the fine
are(—1—2t, —2+3t, —5+4t). As (—1—2t)+2(—2+3t)— (—5+4t) = 0,
the coordinates of any point on the liesatisfy the equation of the plane
x + 2y — z = 0. Hence the lind. lies on the plane + 2y — z = 0.

x+1 y+2 245

= t(say). If the coordinates

Example 7.14 Prove that the planésc —3y—7z = 0,3z —14y—132 = 0
and8z — 31y — 33z = 0 pass through one line.

Solution. Letay : 22 —3y — 72 =0, ay : 3x — 14y — 132 = 0 and
as: 8x — 31y — 332 =0.

First we find the line of intersection of the planesandas, say L in the
symmetric form. Both the planes pass through the origif, 0, 0). Hence
the origin lies on the line of intersectidn Leta, b, c bed.r.s. of the lineL.
L is perpendicular to the normals of the plamgsanda,. Hence, we get
2a—3b—"T7c = 0and3a—4b—13c = 0. Solving these two equations farb
andc, we have-%; = z = —55. Therefored.r.s. of the line ares9, —5, 19.

Equations of the line arégTO =0 = 220 = ¢(say). Now we show that
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the lineL lies on the plan&z — 31y — 33z = 0. Coordinates of any point
on the lineL arg59¢, —5t, 19¢). Now 8(59¢) — 31(—5t) — 33(19t) = 0.
Therefore the coordinates of any point on the liheatisfy the equation
of the planeSz — 31y — 33z = 0. Hence the plane®z — 3y — 7z = 0,
3r — 14y — 13z = 0 and8x — 31y — 33z = 0 pass through one line.

Example 7.15 Prove that the line$5? = 22 = 273 and 232 = L2 =

24 are coplanar.

Solution. Let L; : 27! = yTQ =23 andL, : 452 = 8 = =4,

The points(z1,y1,21) = (1,2,3) and (z2,y2, 22) = (2 3,4) lie on the
lines L, and L, respectively. Thel.r.s. of the lineL; are2, 3, 4; and that
of L, are3, 4, 5.

To— X1 Yo—Y1 22— 21 11
I mi ny =12 3
lg mo ng 3 4

G
Il
o

Hence the given lineg; and L, are coplanar.

Example 7.16 Find the length and equations of the shortest distance be-
tween the lines

3t —9y+52= 0 =x+4+y— =z 9)
6r+8y+32—13= 0 =x+2y+2z—3. (20)

Solution. LetL; : 3x—9y+52=0=x+y—zandLs : 6x+8y+3z—
13=0=2z+2y+ z— 3. The lineL; passes through the origin.Letb, ¢
bed.r.s. of the line Ly, which is perpendicular to the normals of the planes
3r — 9y + 5z = 0andx + y — z = 0. Hence,we ge3a — 96 + 5¢ = 0 and
a+b—c = 0. Solving these two equations farb, c, we have} = g =35
Therefored.r.s. of L arel,2, 3.

Now to find the coordinates of a point on the lihe, takez = 0. We have
6 + 8y = 13 andx + 2y = 3. Solving these two equations far and
y, we getz = 1,y = 2. ThereforeA(3, 2, 0) is a point on the lineLs.
Lete, f,g bed.r.s. of the line Lo, which is perpendicular to the normals
of the planesiz + 8y + 3z = 13 andx + 2y + z = 3. Using this we get



Lines in three dimension 161

6e + 8f + 3g = 13 ande + 2f + g = 3. Solving these two equations for
e, f,g, we haves = f = 4. Therefored.r.s. of the line L, are2, —3,4.
Now let L be the I|ne of shortest distance betwdenand Ly. There-
fore L is perpendicular to botli; and L,. From this, we havé + 2m +
3n = 0 and2]/—3m+4n = 0. Solving these two equations we gkt.s of

2 -7
the lineL as17,2, —7. Hence thel.c.s. of the line are@ AT \/—_
The length of the shortest distance between the lineand L, is the pro

jection of the line segmeri? A on the lineL equals

1 17 ) 2 -7 11
(5—0)@—1—(1—0)@4—(0—0)@:\/@.

The equation of the plane containing the lideand L is

z—0 y—0 z-0
1 2 3 |=0ie.,10z — 29y + 16z = 0.
17 2 -7

The equation of the plane containing the lideand L is

1 5
x—5 y—3 2—0

2 -3 4 | =0i.e., 13z + 82y + 55z = 109.
17 2 -7
Hence the equations of the line of shortest distance are

102 — 29y 4+ 162 = 0 = 13z + 82y + 55z — 109.

7.7 Exercise

. —4 1
1. Show that the Imegl— = # = Z;L and
x_l—y+1—z+loareco lanar
2 -3 8 P '
oz — — -1
2. Show that the I|ne§1—3:y2—5:2 1 and

r—4 y—2 z—-4

5 — are coplanar and find the equation of the
plane passing through the lines.
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10.

11.

12.
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Show that the shortest distance between the lines
z—1 _ Y- 2 z- Tz —2 _ Y- 4 z2-5.

= and = IS —.

2 3 4 3 4 5 V6

. Find the length and equations of the shortest distanceckeet the

m—3:y—8_z—33ndx+3_y+7_z—6.

lines = = =
—1 1 -3 2 4

. Find the distance af-1, 2, 5) from the line through(3, 4, 5)

havingd.c.s. are proportional t@, —3, 6.

Find the distance of the poift, 6, —1
-2 -1 3 . . .
z — = y = z_+1 . Also find the coordinates of its foot.

) from the line

Y+ 2

. x—2 -3, .
. Show that the Imer— =Z— = ZT lies in the planex +

-1
2y —2z+3=0.
Find the equation of the plane containing the line
r+2 y+3 z—-4 .
5= 3 = 3 and the point0, 6,0).
Find the distance ol (1, —2, 3) from the line PQ, through
P(2,-3,5), which makes equal angles with the coordinate axes.

Find the equations of the line of shortest distance letviige lines
r—1 y—2 2z2-3x-2 y—4 2z-5

2 3 4 7 3 4 5

Show that the shortest distance betweenthexzis and the line
ar+by+cz+d=0dz+by+dz+d =0is
cd — cd

Viad —d'e)? + (bd —Vc)?

. —1 1 1
Show that the I|ne§2— = y+1 =z +10 and

-3 8
—4 1 , .
z = y+s3 2t are coplanar. Also find the equation of the

plane pass_ing through the lines.
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13. Find the distance of the poift-2, 2, —3) from the line 21. Show that the lines = 2 = i, LY _ = and
r—3 y+1 =z-2 . . . a B yoax b oy
T Also find the coordinates of its foot. T_Y _ 2 i | 'fl b N m( N n( .
- — === —lieinaplane if—(b — —(c— —(a —b).
== p S c) 3 c—a) 5 a—b)
14. Find the equation of the plane containing the pfint, —7) and the
line 2 +31 - ; 5_ 2 Jlr 2 Also show that the line 7.8 Answers
]- . . xr— _ z—
r= 5(7 —y) = 5(2 + 7) lies in the same plane. (2) 3z — 4y — 52+ 16 = 0 (4) 3v/30, 2348 = 23 (5) @
(6) V21, (4,5, —5) (8) 3x + 2y + 62 = 12
15. Obtain the coordinates of2tge poiEtslg;/vherze_tth5 line oftekbdis- (9) /2 (10) 11z +2y — T2 +6=0;Tz +y — 52 +7=0
tance between the IlnesT =1 = 3 and (12) 11z — 6y — 5z = 67 (13) v/28, (4,1, —2)
r—12 y—-1 z2-5 (14) z +y + 2z =0 (15) (11,11, 31) and(3,5,7) (16) z — 2y + 2 = 0
o - 1 = meets them. (17) V14, 251 = ¥=22-1 (90) 45z — 17y + 252 + 53 = 0.
16. Prove that the line§ — 24 _ ¥ =@ _z=a—d

) ) o — 6b o a+06
r—b+c Y — zZ—b—c .

= = are coplanar. Also find the equa-
B-~v B Btn P q
tion in which they lie.

17. Find the length and the equations of the common perpeladito
y—4 z+1lzxz+6 y+5 z-1
112 4 =1

the lines>—

18. prove thatthelines=ay+b=cz+dande =ay+ 0 =vz+94§
are coplanar ify — ¢)(af — ba) — (a — a)(cd — dy) = 0.

19. Show that the equation to the plane containing the line
% + - 1;2 = 0 and parallel to the line. — = = 1,y =0is
C
1 1 1 1 .
E Y _Z_1 Also prove that - = — + -5 + —, where2d is
a b2 2

the shortest distance between the lines.

4 -1
20. Show that the Imes;— = y;G _Z and3x —2y+z+5=

0 =2x+ 3y + 4z — 4 are coplanar.glso find the equation of the
plane containing the lines.




Chapter 8
The Sphere

Definition 8.1 A sphere is the locus of a point which remains at a constant

distance from a fixed point.
The constant distance is called the radius and the fixed maalled the

centre of the sphere.

Figure 8.1: Sphere

8.1 Equation of a sphere:

We shall discuss various forms of the equation of sphere.

1. Standard equation of sphere: To find the equation of a epkighn
centre at origird(0, 0, 0) and radius-.
Let P(x,y, z) be any point on the sphere. ThéP = r, therefore
OP? = 2. By distance formul@) P? = 22 + y2 + 22
sty =0
This is standard equation of a sphere.

2. Centre Radius form of sphere: To find the equation of a gpivith
centre al’'(a, b, ¢) and radius-.
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Let P(z,y, z) be any point on the sphere. ThélP = r, therefore
CP? = r?. By distance formula,

CP*=(z—a)’+(y—b)*+(z -

—a)?+ =02+ (z—c)? =12 (1)
This is centre radius form of sphere.

Remark 8.1 1. The equation (1) can be written in the form
22 —2ax + a® +y? — 2by + b? + 2% — 2cz + 2 = r?
22 +y? + 22+ 2ur + 2y + 2wz +d =0 (2)
Whereu = —a, v = —b, w = —¢, d = a®> + b*> + % — 2.
The equation (2) is called as general equation of sphere.

2. Note the following characteristics of the equation (2)h&f sphere:

(i) Itis second degree equationiny, z;
(i) The coefficient ofz2, 2, 22 are all equal;

(i) The product termsey, yz, zx are absent.
Conversely, we shall now show that the general equation
ax® + ay?® + az® + 2uzx + 2vy + 2wz +d =0, a #0 (3)
having the above three characteristics represents a sphere
Dividing equation (3) byz, we get
9 9 9 U v w d
+y+22+2—r+2-y+2—2+—-=0.
a a a a

Completing the square, we get

u\ 2 v\ 2 wH 2 u? + 02 +w? —ad
(2+2) +(y+2) +(:+2) = .
a a a a

Thus equation (3) represents a sphere with centr(eiaét =, %U) and
radiusﬁ\/zﬂ +v2 +w? —ad
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Example 8.1 Find the centre and radius of sphere
w2+y2+z2—2ca:—2(:y—2(:z+262:O.
Solution: Comparing given equation of sphere with general equation of

sphere we have, = —c,v = —c,w = —c¢,d = 2¢%. Hence, centre is
C(—u,—v,—w) = (¢, ¢, c) and radius is

V42 +uw?—d=vV2++2—-22=|d.

Example 8.2 Find the centre and radius of the sphere

() 22+ 9>+ 2220 4+4y+62+5=0

(i) 322 + 3y? + 322 + 60 — 9y — 122 + 15 = 0.

Solution: (i) The given equation of the sphere is
2?2+ 22— 22 +4y+62+5=0.

Comparing this equation with general equation or sphere

22y 4 22 2ur + 2y + 2wz +d =0

We haveu = —1,v =2,w = 3,d = 5.

Centre of the sphere C(—u, —v, —w) = (1, -2, —3)

Radius= vuZ +v2 + w2 —d=+1+4+9-5=+9=3.

(ii) The equation of the given sphere is

322 +3y? + 322 + 62 — 9y — 122 + 15 = 0.

Dividing by 3, we getr? + y% + 22 + 20 — 3y — 42z + 5 = 0.
Comparing this equation of sphere with general equatioplogre.

22+ 4 22 2ur 4+ 2uy + 2wz +d =0

We haveu = +1,v = ‘73, w = —2,d = 5. Hence, the centre of the sphere

is C(—u, —v,—w) = (-1,3,2) and

9 9 3
radius = \/u2+v2+w2—d:\/1+1—1+4—5:\/;:5.
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Example 8.3 Find the equation of a sphere having cer{te—3,4) and
radius 5.

Solution: Let P(x,y, z) be a point on the sphere. Then distancé&dfom
centre = radius i.e.

(=2 +@+3)°+(z—4?° = 5
24yt —da46y—824+44 = 0

This is required equation of sphere.

Example 8.4 Find the equation of the sphere passing through the points
(3,0,2),(—1,1,1),(2,—5,4) and having centre on the plane

22 + 3y + 4z = 6.

Solution: Let (a,b,c) be the centre of the required equation of sphere.
Therefore

(a=32 4+ +(c—2%=(a+1)*+ (-1 +(c— 1)~

Simplifying, we getha — 2b + 2¢ = 10 (1)

Similarly we geta + 5b — 2¢ = 16 (2)

Since the centréu, b, ¢) lies on the given plangz + 3y + 4z = 6 we have
20+3b+4c=6 (3)

Solving (1), (2) and (3) we get=0,b = —2,¢c = 3.

Radius of sphere = /(3 —0)2+ (0+2)2+4 (2 —-3)2 = V14,
Required equation of sphere is
PP+ Ay —62-1 = 0

Example 8.5 Find the equation of the sphere passing through
(1,1,2) and(0, —2, 1) and its centre lies on the line

r—1=2—y=2z+1.
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Solution: Let C(a,b, c) be the centre of the sphere. Léf1,1,2) and
B(0,—2,1) be two points on the sphere. Thus? = BC? = (radius)?
and we get

(a—12+0b-12+(c—-2?2 = (a—02+(b+2)%*+ (c— 1)

2a+6b+2c = 1 (1)
Since centr&’(a, b, c) liesontheliner —1 =2 —y =2z +1,
a—1 = 2—-b = ¢c+1 = r say
a=4+1,b=2—r, ¢c=r—1.Using these values in (1), we get= 1L
ThUSa—r+1—11+1—123,b_2 LT =1 _1=9

2
Therefore centre of sphere@¥a, b, c) (73, =L, 9) and radius of sphere
equals

2 2 2
13 n Q_Z n 9—1 _ /169+9+49:\/227
2 2 2 4 2

Required equation of sphere is

BN T (L0
) Y73 AY

24P+ 22— 13+ Ty —92+18 = 0.

Example 8.6 Find the equation of the sphere passing throg@s, 0),
(2,1,—1) and whose centre lies on the lime- y — z = 0 = 2z + 3y.

Solution: Let C(a,b,c) be the centre of the sphere. Since the center

C(a,b,c) lies on the line.

r—y—2z = 0=22+3y
a—b—c = 0 (1)
20+3b = 0 (2)

Let A(2,1,—1) and B(0, 3,0) be two points on the sphere. Therefore

(AC)? = (BC)? = (radius)?

(@a—2)'+(0—-1)2+(c+1)? = a®+(b—3)*+ ¢
—4a+4b+2c = 3 (3)
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Solving (1), (2) and (3) we get = _ﬂ b= g = _%

-9\?> (6 Z/-15\? 882
1 f h = _ _— _— = _—
Radius of sphere \/(10) + <10 3) +< 0 ) 100

The required equation of sphere is

SOV (o B (L ) L s
0 Y710 “TI0) T 100

4y +22 492 —6y+152—27 = 0.

8.1.1 Sphere with a given diameter:

To find the equation of the sphere described on the line jgittie points
A(z1,y1,21), B(x2,y2, 22) as diameter.

B(x2,y2, 22
P ey ( )

Figure 8.2: Diameter form of Sphere

Let P(z,y,z) be any point on the sphere described 4B as diameter.
Since section of the sphere by the plane through the threésgi A, B is
a great circle havingl B as diameter an lies on semi-circle. Therefore
PAL1PB. The direction cosines aP A and PB are proportional ta: —
1,y — Y1,z — 21 andx — x9,y — y9, 2 — 2o respectively. Sincé’A is
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perpendicular t&° B,

(—z1)(z—22) + (Y —y1)(y —y2) + (2 — 21)(2 — 22) = 0
This is diameter form of equation of the sphere.
Example 8.7 Obtain the equation of the sphere described on the join of
A(2,-3,4), B(—5,6,—7) as diameter.

Solution: Note thatA, B are the end points of the diametéB. The equa-
tion of sphere in diameter form is

(x —z1)(x —22) + (y —y1)(y — y2) + (2 — 21)(2 — 22)
(z—=2)(z+5)+W+3)(y—6)+(z—4)(2+7) =
P2 +yP+22+32—-3y+32—-56 =

o o O

Example 8.8 Obtain the equation of the smallest sphere passing througt
A(-1,2,3) andB(1, 3, —4).

Solution: Let P(x, y, z) be any point on the sphere. The direction ratios of
AP arex+1,y—2,z—3. The direction ratios oBP arex— 1,y — 3, 2 +4.
SinceAP1 BP

(+D)@-1)+Hy—-2)(y—3)+2-3)(z+4) =
P4+ 22—+ -7 =

8.1.2 Intercept Form:

To find the equation of a sphere with intercept$, ¢ on z, y and z-axis
respectively and passing through the origin. Let the eqoadf required
sphere be

22y 4+ 22 2ur 4+ 2uy + 2wz +d =0 (1)

Since originO(0, 0, 0) lies on sphere (1J = 0. Sincez, y, z intercepts are
a, b, c respectively. Therefore the poirt(0, 0, 0) lies on sphere (1)

a2—|—2ua:Oi.e.u:—g
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Similarly the pointsB(0, b,0) andC(0, 0, ¢) lies on sphere (1). This gives
V=3 andw = —§. Using above values of, v, w, d in equation (1) we
get

2+ 4+ —ar—by—cz=0

This is equation of sphere in intercept form.

Example 8.9 Find the equation of the sphere passing through the origin
and making equal positive intercept 5 units of the axes.

Solution : We know equation of the plane passing through origin and mak-
ing intercepta, b, c on co-ordinate axes.

$2+y2+22—a$—by—cz:0
In this caser = b = ¢ = 5. Hence, equation of the sphere is
m2+y2+z2—5$—5y—5z:0

Example 8.10 Find the equation of the sphere which circumscribes the
tetrahedron{0, 0,0), (0,3,0), (5,0,0), (0,0,7).

Solution: The equation of sphere passing through origin and making in-
terceptsu, b, c on co-ordinate axes is

PP+ —ar—by—cz =
24+ 422 -5 —3y—T7z =

8.1.3 Equation of the sphere through four given points:

We want to find the equation of the sphere passing through doan
points, A(x1,y1, 21), B(x2,y2,22), C(x3,ys3,23) andD(x4, y4, 24).
Let2? + 4% + 22 + 2uz + 20y + 2wz +d =0 (1)

be the required equation of sphere.

Since the four pointsl(z1, y1, 21), B(x2, y2, 22), C (3, ys, z3) and
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D(z4,y4, 24) lie on the sphere (1), we get

o]+ y5 + 27 4 2umy + 2vyp + 2wz +d =
T34 Y5 4 25 + 2uxe + 20y + 2wae +d =
23+ Y5+ 23 + 2uws + 2uyz + 2wz +d =
T3+ y; + 27+ 2umg + 2y + 2wz +d =

(i2)
(iid)
(iv)

o O O O

Eliminating u, v, w andd from above five equations, we have

22 + y2 + 22 Yy oz
B+ oy 2
5+ ys+ 25 w2 Yo 2
23+ yi+2 w3 ys 23
iyl -+ x4 oy

— = =
Il
o

This is the required equation through the four given points.

Note: While solving the problems we may adopt a simple method @s-ill
trated in solved examples.

Example 8.11 Find the equation of the sphere passing through the points
A(2,4,-1), B(0,—4,3), C(—2,0,1) andD(6,0,9).

Solution : Let E(a,b,c) be the centre of the sphere. Since the points
A(2,4,-1), B(0,—4,3), C(—-2,0,1) and D(6,0,9) lies on the sphere.
Therefore radius= AE = BE = CE = DE. This implies thatAE? =
BE? = CE? = DE?. Now AE? = BE? gives

(=224 =42+ (1P = (a=0P+ b+ +(6-3)

a+4b—2c = -1 (1)
Similarly AE? = CE? gives
(a=22+b=4>4+(c+1)? = (a+2)?+b*+(c—1)
204+2b—c = 4 (2)
Next AE? = DE? gives
(a—22+(b-42+(c+1)? = (a—6)2+b*(c—9)?

2 —2b+5¢ = 24 (3)
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Adding (2) and (3)
da+4c=28 ie. a+c=7 (4)
Multiplying equation (3) by 2 and adding to equation (1) wé ge
ba + 8¢ = 87 (5)

Solving (4) and (5) we obtain =3, c=4By (1) b = 1.
The centre of the sphere B(a, b, ¢) = (3,1,4) and its radius is/35. By
centre radius form of sphere.
(x—a)?+@y—0>+(z—-c)? = r?
ie. (z—3)%+ (y—1)? + (2 — 4) 35
P42 —6r—2y—82-9 = 0

This is required equation of sphere.

Example 8.12 Find the equation of the sphere passing through
0(0,0,0), A(0,1,—1), B(—1,2,0) andC(1,3,2).
Solution: Letz? + y? + 22 + 2uz + 2vy + 2wz +d =0 (1)
be the required equation of sphere. Siii2@, 0,0) lies on (1) , we get
d = 0. Since the pointA(0, 1, —1) lies on (1)
Ou+v—-—w+1=0 (1)

Similarly the pointsB(—1, 2,0) andC(1, 3, 2) lies on (1)

—2u+4v+0w+5 = 0 (3)

u+3v+2w+7 = 0 (4)

Solving equations (2), (3) and (4) we get
—11 —23 -9
BV VI Ve
Using these values in equation (1)

11 23 9

2 2 2
- - -_— P 0
Tty +z 71‘ 7y 7z

T2+ T+ 72— 11le— 23y —92 = 0

u =

This is required equation of the sphere.
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Example 8.13 Find the equation of the sphere passing throggh, 0),
(0,-1,2), (2,0,—-1), (2,2,0)

Solution : Let E(a,b,c) be the centre of the sphere. Sindél,1,0),
B(0,-1,2),C(2,0,—1) andD(2,2,0) lies on the sphere, radius AF =
BE = CFE = DE. This implies that(AE)?> = (BE)? = (CE)? =
(DE)%. Now (AE)? = (BE)? gives

(a—124+0b-12%+ = >+ (b+1)?+ (c—2)?
2a+4b—4c = -3 (1)

Similarly (AE)? = (CFE)? gives

(a—124+0b-1)2+c = (a—2°+b*+(c+1)?
20—-2b—2¢c = 3 (2)
(AE)? = (DE)? givesa +b =3 (4)
After solving (1), (2) and (3) we get = 23, 32 :_3;—32,1 c=2

The centre of the sphere &(a,b,c) = (32,32, %5) and its radius is
VI139 By centre radius form of sphere

(e—a + (-0’ + (-0 = 1+

33 2+ N 3 2+ 21\ 2 1139
r— — — z—— = —
10 Y710 10 100

5(x? +y? + 2%) — 33z + 3y — 21z + 20 = 0. This is required equation of
sphere.

Example 8.14 Find the equation of the sphere passing through the points
A(1,0,-1), B(2,1,0), C(1,1,—1)andD(1,1,1).

Solution: Let A(1,0,—-1), B(2,1,0), C(1,1,—1) and D(1,1,—1) be
four points on the sphere. L&k(a, b, ¢) be the centre of the sphere. There-
fore radius= AE = BE = CE = DE. This implies(AE)? = (BE)? =
(CE)? = (DE)%. Now (AE)? = (BE)? gives

(a—12 4+ +(c+1)? = (a—22%+(b-1)2+
2a+2b+2c = 3 (1)
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Similarly (AE)? = (CE)? gives2b + 2¢ = 1 (2)
(CE)? = (DE)? gives
(0= 12+ (b= 12+ (417 = (a=1P+ G- 17+(c~1)?
¢c =0 (3)

By 2)b = % and by (1)a = 1. The centre of the sphere i5(a,b,c) =
(1,1,0) and its radius is,/0+ 1 +1 = ‘/73 By centre radius form the
sphere
2 1 2 2
(2 =12+ @y—3)7+ (=07 =

Pyt -2w—y =

=N Y

This is the required equation of sphere.

8.2 Plane section of a sphere:

To prove that the plane section of a sphere is a circle.

Figure 8.3:
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Let O be the centre of the sphere. Liébe any point which is common
to the sphere and the plane. L@1V is perpendicular to the given plane;
N being the foot of the perpendicular. The lidéP lies in the plane.
ThereforeON L N P. In right angled triangleé N P,

OP? = ON? + NP?. Hence,NP? = OP? — ON?

The pointsO and N being fixed. ButO P is radius of the sphere which is
fixed. AlsoON is fixed. ThereforeD P2 — ON? is fixed N P? and hence
NP is constant. Hence the locus Bfis circle whose centre itV (the foot
of perpendicular from the centre of the sphere to the pland)radius is
vVOP? — ON2. Thus section of a sphere by a plane is a circle.

Remark 8.2 1. The section of a sphere by a plane through it centre is
known as a great circle. The centre and radius of a greatcrd
the some as those of sphere.

2. () If ON > OP, then circle is imaginary.
(i) If ON = OP, thenitis the point circle.

Circle intersection

No intersection

Point intersection

Figure 8.4: Section of a sphere by a plane

Example 8.15 Find the centre and the radius of the circle
2?4 y? + 22 -2 — 4z =11, z + 2y + 22 = 15.

Solution: The given equation of circle is the intersection of the spher
2+ y?+ 22 -2y —42-11=0 (1)
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with the planer + 2y + 2z —15=0 (2)
The centre of the sphere (1)d4 —u, —v, —w) = (0,1, 2), and
radius=7r = vu2 + 2 + w2 —d=+0+1+4+11 =16 =4.

Draw C' M perpendicular front” on the plane: + 2y + 2z — 15 = 0 Since
C' M is perpendicular to the plane (2), the direction ratio§'df arel, 2, 2
and the equations of lin€ M are{ = yT’l = %2 = r say
r=ry=2r+1,2=2r+2 (3)

These are the co-ordinates of any point on the h¥. If this point lies
on the plane (2) then

A4202r +1)+22r+2) = 15ier=1

Puttingr = 1in (3) we getM (x,y, z) = (1, 3,4)

From right angled triangl€' M P, CM? + M P? = CP?
MP=+VCP?—CM?= /16 — [1 + 4+ 4] = V7.
The centre of the circle i87(1, 3,4) and its radius= /7.

Example 8.16 Prove that the straight lingt! = =2 = 22 touches the
spherer? + y? 4+ 22 = 9. Find the point of contact.

Solution We have the equation of sphere

?+yt+22=9 (1)
The equations of the line afe!l = Y2 = 22 = r say
x=4r—1ly=r+2z=r+2 (2)

Let P(z,y,z) = P(4r — 1,r + 2,r + 2) be points on the line.
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If this point lies on sphere (1) then that of sphere (1) and plane (3) or sphere (2) and plane (3).
) ) ) But intersection of a sphere and a plane is a circle.
@r =17+ +2)°+(r+2)° = 9 Thus the curves of intersection of two spheres is a circle.
182 =

Note: The plane given by equation (3) is called radical plane.

T =

Example 8.17 Find the equation of the sphere through the circle

2?2 +y?+ 22+ 62— 4y —62—14 = 0,z 4y — 2z = 0 and passing through
the point(1, 1, —1). Also find centre and radius of this sphere.

Both roots of the quadratic equationsirare zero. Putting = 0 in (3) we

get P(—1,2,2). Clearly P(—1,2,2) satisfies equation of sphere (1). i.e.
P(—-1,2,2) lies on (1). Therefore the straight line (2) is tangent lio¢he _ _ _ .
sphere (1) at poinP(—1,2,2). The pointP(—1,2,2) is required point of Solution: The equations of given circle are
contact. 5 9 o
S=z"+y"+2°+6xr—4y—6z2—14 =

8.3 Intersection of two spheres: Uszty-z =0
The equation of the sphere passing through this circlg is \U = 0,

To prove that the curves of intersection of two spheres isceci .
where is a real number.

Let
2., .2, 2 _
Si=a? + P+ 22+ 2w+ 20y +2wiz4+dp = 0 (1) ey 27+ 0r —dy -6z -4+ Mz +y+2) =0 (1)
- 2,2 2 _
S$2= 2" +y + 27+ 2upT + vy + 2wz +dy = 0 (2) Since the point1, 1, —1) lies on the sphere (1)
be two equations of sphere. Consider the equafior S. = 0 i.e. L1 4146-446-144A1+141) = 0.
2(u; —u2)xr + 2(v1 —v2)y + 2(wy —wa)z+ (d1 —da) =0 3 . ) . i )
(1~ o) (01 = v2)y +2(wn 2)2 + (dr = o) 3) Hence,A = 1. Putting A = 1 in equation (1) we get required equation of
Equation (3) is first degree equation iny, z. Therefore it represents a sphere
plane. LetP(x1,y1,21) be a point common to two spheres (1) and (2).
Therefore 24y 22 46— 4y — 62— 14+ (x+y—2)

— .2 2 2 2P+ —3y—T2—-14 =
S1 =7 +yi + 27 + 2urzy + 20191 + 2w121 + dy

So = a] +yi + 21 + 2uomy + 209y1 + 2woz +day = 0 The centre of this sphere @ (=, 2, 7) and its radius is@.
Now at pointP(z1,y1, 21), 51 — S2 = 0 gives Example 8.18 Show that following spheres touches each other and find

2(uy — up)w1 + 2(v1 — va)y1 + 2(wy — wa)z1 + (dy — dz) =0 their point of touching

This shows that the poir®®(z1, 31, 21 ) satisfy equation of plane (3) B4yt + 2 —dr—2y—4245 = 0 (1)
Therefore the curves of intersection of two spheres (1) ahis(same as P42 -6 —6y+17 = 0 (2)
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Solution: The centre of sphere (1) (5;(2, 1, 2) and radius is
i =4+ 1+4—5 =4 =2 The centre of sphere (2) &,(3,3,0)
and radiusis, =v9+9+0— 17 =+1=1.
The distance between the centre of the spheres
=C1Co=+1+4+ :\/§Z3ZT1+T2.
Therefore two spheres (1) and (2) touch externally.
If P(z,y, z) is their point of contact, the® dividesC; C; internally in the
ratior; : 9 i.e. 2 : 1 therefore

C23)+1(2) 8 2(3) + 1(1) 200) +1(2) 2

7
i N A N

P (2,1 2) s required point of contact.

8.3.1 Equations of a circle:

We know that the plane section of a sphere is a circle. Thegefe circle
can be represented by two equations, one being of a spheatardf the
plane. Thus the two equations

2+ + 224 ur + 2oy 4+ 2wz +d=0, lx+my+nz=P

taken together represent a circle. A circle can also be septed by the
equations of any two spheres through it. We note that thetiemsa:? +

y? +2gx +2fy +c =0, z = 0 also represents a circle which is the
intersection of the cylinder? + y2 + 2gx + 2fy + ¢ = 0 with the plane.

8.4 Sphere through a given Circle:

8.4.1 Sphere passing through the circle of intersection ohe
given sphere and plane:

To find the equation of a sphere which passes through the eiiith equa-
tions

S =a?+y? + 22 + 2ux + 2vy + 2wz +d
U=slz+my+nz—p = 0 (2)

I
o
—~
—_
~—
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Consider the equatiof + AU =0 i.e.
2?2+ 22 4 ur + 2y + 2wz +d+ Nz +my+nz—p)=0

2+ 2 4+ 22+ 2u+ M)z + (20 4+ dm)y 4+ 2w +n\)z+d — A\p = 0(3)

In equation (3) we observe that it is the second degree enuiatic, v, z in
which coefficients o2, 32, 2% are same and the product terms:in yz, zz
are absents. Therefore equation (3) represents a sphére:;Lg;, ;) be
any point which satisfy the equations of circle (1) and (&) i.

x%+y%+zf+2u$1+20y1+2wz1+d
lxy +my1 +nzp —p =

The point(x1, y1, 21) also satisfies equation (3)

2?4+ y? + 22 + (2u+ N)z1 + (20 + Am)ys + (2w +nX\)z +d — Ap

= (22 + y? + 2 + 2uzy + 2vy1 + 2wz +d) + A(lz1 + my; +nz —p)
=0+X0=0

i.e. the point(z1, y1, z1) which is common to (1) and (2) also lies on (3).
Hence (3) represents a sphere which passes through theinisghich the
sphere (1) is cut by the plane (2). For different values,afie get different
spheres. Thus, the equatiéh+ AU = 0 represents a sphere containing
the circleS = 0 andU = 0 for all real values of\.

8.4.2 Sphere passing through a circle, which is the intersgon
of two spheres:

LetS) = 22 + 9% + 22 4+ 2uiz + 201y + 2wz +dp =0 (1)

andSy = 22 + 4% + 22 + 2usx + 2u9y + 2woz +dy = 0 (2)

be two intersecting spheres. Equations (1) and (2) repiesaasircle. Con-
sider the equatios; + A\So =0 (A # —1)

22+ y? + 22 + 2upx + 2u1y + 2wiz +dp + A

(22 + 9% 4+ 2% + 2upx + 2uoy + 2wz +do) =0

(T4+ Nz 4 (1 + Ny? + (14 222 + 2(ug + M)z + 2(v1 + Avg)y
+ 2(w1 + /\U)Q)Z + (d1 + /\dg) =0 (3)
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Thus, equation (3) is a second degree equatiom, in z in which coef-
ficients of 22,42, 2> are equal and product termsy, yz, zx are absent.
Therefore equation (3) represents sphere.

If P(x1,11,21) is apoint common to sphere (1) and (2) then

.T% + y% + z% 4+ 2uq 1 + 201y1 + 2wy 21 + di
JJ% + y% + z% 4 2uox1 + 209y1 + 2woz1 +dy =

At point P(z1,y1, 21)

Si+AS2 = (2 +ui + 21 + 2uiar + 2v1y1 + 2wi21 + di)
—|—/\(x% + y% + z% + 2upxy + 2v2y1 + 2waz1 + da)
= 0+A(0)=0

ThereforeP(z1,y1, 21) satisfies equation (3).
ThusS;+AS; =0 (X # —1) is a sphere through the circle of intersection
of the two sphere$; = 0,5, = 0.

8.5 Intersection of a sphere and a line:

Letz? +y? + 22 + 2ux + 2vy + 2wz +d =0 (1)

be the equation of the sphere. The equations of line hdyingn asdirec-
tion cosines and passing througiiz, y1, z1) are™== = -0 = 222 —

r say. (2)

Thereforer = 21 +1lr, y =y +mr, z =2 +nr (3)

These are the co-ordinates of general point on the line (2).

If the point(x,y, z) = (x1 + Ir,y1 + mr, z; + nr) on the sphere (1), then
(z1 +1r)% + (y1 +mr)? + (21 +nr)? + 2u(xy + 1) + 20(y; + mr)
+2w(z1 +nr)+d=0

r2(1? +m? + n?) + 2r(lzy + my1 + nz1 + lu + mo + nw)

+ 23 4+ Y3 + 27 4+ 2uxy + 20y; + 2wz +d =0

This is quadratic equation inand hence it gives two values ofsayr;
andr,. Therefore, there are two point§(zq + lr1,y1 + mry, 21 + nry)
and B(z1 + lre,y1 + mre, 21 + nre) common to sphere (1) and line (2).
Hence in general a line intersects a sphere in two points.
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Remark 8.3 1. If r; andry are real and distinct, then there are two
common points.

2. If ry = ro, then line touches the sphere.

3. If r; andry are imaginary, then the line does not intersect the sphere.
Example 8.19 Find the point at which the liné;” = 2% = #£2 Cuts
the sphere:® + 4% 4+ 22 — 22 + 3y — 52 — 31 = 0.
Solution: We have equation of sphere

2y 422 — 2243y — 52 —31=0. (1)
The equations of the line are
r—7 y—6 z2+5
2 1 -1

Thereforex = 2r + 7,y =r + 6,z = —r — 5.
Let P(z,y,2) = (2r+7,r+6,—r—5) be a point on the line. If this point
lies on sphere (1) then

(2r+7)2+(r+6)2+(—r—5)2=2(2r+7)+3(r+6)—5(—r—5)—31 = 0.
Hence,

= r say (2)

6r2 + 547 +108 = 0
(r+6)(r+3) = 0
r=—6o0r r=-3
Puttingr = —6 andr = —3 in the coordinates oP, we obtain point of

intersection of line and sphere 8—5,0,1), Q(1,3,—2).

Example 8.20 Find the equation of the sphere passing through the circle
22+ y? + 22420 -2y —22—1=0;22 — 2y + 2 — 1 = 0 and passing
through the point3, —1,1).

Solution: The equations of given circle are
S=a? 4+ +22+20-2Y—-22—-1 = 0
U=2z-2y+2—-1 = 0.
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The equation of the sphere passing through this circlg #s \U = 0, By using equation (2)
where) is real number.
r2(1 + m?* +n?) + 2r(lzy + myy +n2) +a® = o

Byt + 24202 22— 1+ M2z -2y +2—1)=0 (1) r2(12 + m? + n2) + 2r(lzy + my1 +nz1) = 0

One root of this equation & Therefore, in order that the line (3) is tangent
line to sphere (1), the other root must alsodbe

8A+16=0i.e.\= —2. Thereforelx; + my; +nz; =0 (4)

The equation of tangent plane B{z1,y1, z1) is obtained by eliminating
[, m,n from equations (3) and (4)

Since the point3, —1, 1) lies on (1)

PuttingA = —2 in equation (1) we get.

Py -2 —2:-1-222 -2y +2-1) = (z—z)m1+W—y)n+(z—21)n = 0
2?2242y —4241 = 0 avi+yy+2n = @y + 2
zxy+yyr + 2z = d?

8.6 Equation of Tangent Plane: This is the equation of tangent plane to sphere (B @t;, y1, 21) on it.

8.6.1 Standard equation of sphere:
g P 8.6.2 Equation of Tangent Plane:

To find the equation of a tangent plane to the standard equatisphere . . .
22 4% + 22 = a? at P(z1,y1, 1) On it. To find the equation of the tangent plane at any péint y;, z;) of the

here.
Leta? +y% + 2% = a® (1) > 2, .2 .2
be the standard equation of the sphere. Leta” 4y~ 4 27 + 2ux + 2vy + 2wz +d =0 (1)

Let P(x1, 41, 21) be any point on the sphere (1)

b+t = a 2)
The equations of a line passing througliz, y1, 1) are
T—T1 _ Y—yi __ Z—nZl =7 say (3)

l m
The co-ordinates of a general point on the line are
r=x1+Ilr, y=y1+mr, 2 =2, +nr.

This point lies on the sphere (1) if

be the general equation of the sphere. Since the gtnt, y;, z1) lies on
the sphere (1)

2} 4+ yi + 23 + 2uxy + 2oy + 2wz +d =0 (2)
The equation of a line passing througfiz1, v, 21) are
r—T Yy—un Z—Zz1

= = =r say (3)

Thel)n the cojgrdinates%f general point on this line are
x=ux1+Ilr, y=y +mr, 2=z +nr.

This point lies on the sphere (1) if

(w1 +1r)% + (y1 +mr)? + (21 +nr)? + 2u(xy + 1) + 20(y; + mr)
+2w(z +nr)+d=0

(z1 4+ 1) + (y1 + mr)? + (21 + nr)?

r2(12 +m? +n?) + 2rl(z1 +u) + m(y1 +v) + n(z1 + w))]
r2(12 +m? +n2) 4+ 2r(lzy +my1 +nz) + (2 + 2 +22) = a

By using equation (2)
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r2(12 +m? +n?) + 2r[l(x1 +u) + m(yr +v) + n(z +w)] =0

One root of this equation &

Therefore, in order that the line (3) is a tangent line to splig), the other
root must also bé.

l(xy+u)+myr +v)+n(z1 +w)=0 (4)

The equation of tangent plane &z, y1, z1). is obtained by eliminating
l,m,n from (3) and (4).

(x —z1)(x1+u)+ (Y —y1)(y1 +v) + (2 —21)(z1 +w) =0

T Yy + 221 +um+vy+wz:x%+y%+2%+uaz1+vy1+wzl
Adding uz1 + vy + wz1 + d on both the sides

zx1+yyr +zz tulz+z) +oly+y) +w(z+21) +d

= 22 + 9% + 2 + 2uxy + 20y + 2wz + d.

.. By using (2)

zx1 +yy1 + 2z Hul@+ 1) oy +y1) Fw(z+21) +d=0.

This is the equation of the tangent planePdt:;, 1, z1) to the sphere (1).

Example 8.21 Show that the plan@x — 2y + z + 12 = 0 touches the
spherer? 4 y? + 22 — 2z — 4y + 22 = 3. Also find the point of contact.

Solution: We have equation of sphere
2 2 2 —
¥ty +2°—2x—4y+22-3=0 (1)

The centre of sphere (1) {8, 2, —1) and radius is
r=vuZ+vit+uw?—d=VI+4+1+3=/9=3.

The length of perpendicular from the centée(1, 2, —1) to the planez —
2u+2z4+12=0Iis

azy + by + ¢z +d’ B ‘2(1) —2(2) +1(-1) —1—12’ B ’g’ _ 3
Va2 + b2 4 c? Vi+4+1 3 ’
which is radius of the sphere. Therefore the plame- 2y + z + 12 = 0
touches the sphere (1). The direction ratios of normal tqthee (2) are

2,—-2,1.
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CM is normal to the plane (2) Equation of lidé)\ are
x—1 y—2 =z+1
2 -2 1

r=2r+1l,y=-2r+2,z2=r—1 (3)
These are the co-ordinates of any point on the line. If thistdi@s on the
plane (2)

= r say. Hence,

22r+1)—2(-2r+2)+(r—1)+12 = 0

r = —1

Putr = —1 in (3) we get point of contact/ (—1,4, —2).

8.6.3 The condition of tangency:

Standard Sphere:

To find the condition that the plane
lx+my+nz=p (1)

is tangent plane to the spheré+ y2 + 2% = o2 (2)
Suppose the plane (1) is a tangent plane to the sphere Ayaty:, 21)
on it. We know that the equation of the tangent plané@t;, y1, 21) to
sphere (2) is

T + Yy + 221 = a’ (3)

Since the equations (1) and (3) represents the same plarefdte, their
coefficients are proportional i.e.

l m n
a’l a’m a’n
1= =—21 ="
p p p
Since the poinfP(z1,y1,21) = P (‘%l, “QTT”, %) lies on sphere (2)

a?l 2 a’m 2 a? 2
(5)+(5) +(5) -«
p p

IS
N
S
+
3
[\
+
3
\_/w
I
=
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i.e.p=+avI®?+m?+n? = +a.
This is required condition. If this condition is satisfiedeh the point of
contact is

a?l a®*m a*n

“p

(z1,91,21) = ( > = (£al, am, +an).

General equation of sphere:

To find the condition that the plarie + my + nz = p is tangent plane to
the sphere

2? +y* + 2% + 2ux + vy + 2wz +d =0 ()

(1) is the general equation of the sphere having cefitreu, —v, —w) and
radiusvu? + v2 + w? — d.

The plandz + my + nz = p will be tangent plane to the sphere (1) if the
length of perpendicular from the centre of the sphere islgquhe radius
of the sphere.

() +m(—v) + n(~w) —p

Thus(lu + mv + nw + p)? = (u? +v? + w? — d)(1* + m? + n?) i.e.

= Vu2+o24+uw?—d

(lu 4+ mv + nw + p)? = u? + v + w? — d.

This is the required condition.

Remark 8.4 Let C' andr be the centre and radius of the sphere respec-
tively and P be any point in space. If

(i) CP < r, then the pointP lies inside the sphere.

(iiy CP = r, then the pointP lies on the sphere.

(ii) C'P > r, then the pointP lies out side the sphere.
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8.7 llustrative Examples:

Example 8.22 Find the co-ordinates of the points where the line
r+3 y+4 2-8

intersects the spher€ + y2 + 22 + 2z — 10y —

4
23=0.
Solution: The given equations of line are

r+3 y+4 z2-8
4 3 -5

= rsay (1)

Hencex =4r — 3,y =3r — 4,z = —5r +8 (2)
Since line (1) cuts the equation of sphere.

2+ + 22420 —10y —23=0 (3)

.. Using (2) in (3)
(4r — 3)% + (3r —4)*> + (=5r +8)? +2(4r — 3) — 10(3r —4) —23 =0

50r2 — 150r + 100 = 0
(r=1)(r—-2 =0

r = 1l,r=2.

Whenr =1, by (2) P(z,y,2) = (1,—1,3) and when = 2, Q(x,y, z) =
(5,2,—2). Thus, P(1,—1,3) and Q(5,2,—2) are the required points of
intersection.

Example 8.23 Find the equation of the circle which is a section of the
spherex? 4 y? + 22 + 6y — 62 — 21 = 0 and has its centre at the point
M(2,-1,2).

Solution: The given equation of the sphere is
2?4yt + 2%+ 6y —62—21=0 (1)

The centre of the sphere (3 C(0, —3, 3) and radius of sphere is
r =+0+ 9+ 9+ 21 = +/39. The direction ratios of lin€’ M are2,2, —1.
But C'M is normal to the plane.
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Therefore equation of plane passing througti2, —1,2) and having di-
rection ratios2, 2, —1 of its normal is

alr —x1)+ by —vy1) +c(z—21) = 0
2 —2)+2y+1)—(2—2) =
20 +2y—2 = 0

Therefore required equation of circle is
2?4y’ + 2246y —62—21=0, 2042y — 2 =0.

Example 8.24 Find the equation of the sphere passing through the circle
22+ 9y?+ 22422 +3y—6=0,2 — 2y + 4z = 9 = 0 and through the
center of the sphere? + y? — 22 — 22 + 4y — 62 + 5= 0.

Solution: Let

S=a?+y?+22+224+3y—6 =
U=x—-2y+42—-9 =

We knowsS + AU = 0 represents sphere.
@y 2204+ 3y —6) AN —2y+42—-9)=0 (1)

The centre of the spher€ + 2 + 2> — 2z 4+ 4y — 62 +5 = 0is (1, -2,3)
Since sphere (1) passes through cefitre-2, 3)
Thereforet + 8\ = 0, A = 5! PuttingA = = in equation (1) we get

2z +2 + 28 + 30 +8y —42—-3=0
This is required equation of sphere.

Example 8.25 Find the equation of the sphere whose centre-i8, 0, 1)
and which touches the plane — y + 4z = 36.

Solution: Radius of sphere equals the length of perpendicular draovn fr
(—2,0,1) on the plan&z — y + 4z — 36 = 0. Thus,

-10-0+4-36
V25 +1+16
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Since centre of the sphere(is2, 0, 1). By centre radius form of sphere

(z+2°+(y—07+(z—1)% = 42
2P+l 4r—2:-37 = 0

Example 8.26 Find the equation of the sphere passing through the points
P(2,3,—1) andQ(1, 1,0) and whose centre lies on the line

r y+1 2z2-2
3 -2 27
. . . . 1 -2
Solution: The given equations of line argé = % S 5 =T say

r=3r,y=—-2r—1,2=2r42.

Let C'(3r,—2r — 1,2r + 2) be the centre of the sphere. BE{2,3, —1)
andQ(1, 1,0) lies on sphere. Therefofgadius)? = CP? = CQ2.
(Br—2)2+(1+2r+3)2+(2+2r+1)?

= Br-12+0+2r+1)%+(2r+2-0)?

—0
6r = —-20 =
T ie.r= 3

) 3 )
By centre radius form required equation of sphere is

17\ 2 14\ 2 1481

10)? - — _—

(x + 0)—|—<y 3)+(z+3> 9
9(z% 4+ 9% + 2%) + 180z — 102y + 842 — 96 = 0.

Centre of sphere- C' (—10, 37, =) and radius of sphere @

Example 8.27 Find the equation of the sphere passing through the points
(2,0,0),(0,2,0),(0,0,2) and having the radius as small as possible.

Solution: Let the required equation of sphere be

22+t 4 22 ur 4+ 2uy + 2wz +d =0 (1)
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Since(2,0,0), (0,2,0), (0,0, 2) lies on sphere (1). Therefore

4d4+4u+d =
44+4v+d =
44+4w+d =

Thisgivesd = —4 — 4u = —4 — 4v = —4 — 4w
ileu=v=w (2)
Radius of sphere is

ro= Vit +w? —d=u2+u?+u2— (—4—4u)

r = V3u2+4du+14
2

Forr to be minimumﬁ =0 andﬂ > 0.
du du?

dr 1(6u +4)
du 2B+ du+4d
6u+4=0 ie 1 2
U = e uU=——==—=.
6 3
. . d*r 9
We leave it as an exercise to show t >0.By(Qu=v=w= 7

U
andd = —4 + § = =}, Using above value of, v, w andd in (1)

32 492+ 2% —dr —4dy—42—4=0
This is required equation of sphere.

Example 8.28 Discuss the position of poirf?(0, 1, 2) with respect to the
spherex? + y? + 22 — 6z 4+ 4y — 22 — 11 = 0.

Solution. The centre of given sphere C'(—u, —v, —w) = (3,—2,1) and
radius equals = vu2 +v2 +w? —d=+9+4+ 1+ 11 = /25 = 5.
SinceP(0, 1,2), by distance formula
CP=yB-02+(2-12+(1-22=v9+9+1=+19

CP = /19 < 5 = radius. HenceP(0, 1,2) lies inside the sphere.
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Example 8.29 Find the length of the intercept cut off by the line
z+2=y+3=2z+5o0nthe sphere? + % + 22 — 6z + 52 + 11 = 0.

Solution: We have given equation of sphere
2 2 2 —
x4y +2°—6x+52+11=0 (1)

and equations of line +2 = y+3 = 2+ 5 = rsay. If P(z,y,2) =
P(r—2,r—3,r —5) lieson (1) then

r2—7r+12=0ie.r=4, orr = 3.

Whenr = 4, P(x,y,z) = (2,1,—1), and whenr = 3,Q(z,y,z) =
(1,0,—2). Length of intercept cut off by line

PQ=vV(2-124+1-02+(-1+22=V1+1+1=13.

Example 8.30 Find the value of\ if the planex + y + z = A touches the
spherez? + y2 + 22 + 2z + 2y — 2z — 9 = 0. Also then find the point of
touching.

Solution: The given equation of sphere is
Py 22+ 2y—22-9=0 (1)

The centre of sphere (8 C(—1,—1,1) and radius of sphere
=r=yI+1+1+9=+12=23.

The planex + y + z = X will touch the sphere (1) if the length of the
perpendicular fronC'(—1,—1, 1) to the plane = radius of the sphere.

'—1—1\/4_;1—)\' _ 23

|—1—-XA] = 6
A=5 or A=-T.

The direction ratios of a normal to the plamet vy + z = X arel,1, 1.

Equations of line passing througli(—1, —1,—1) and having d.r.4,1,1

x+1 y+1 z-1
111

are = rsay. Thus,(z,y,2) = (r—1,r—1,r+1)
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is any point on the line.
If A = —7, then the equation of the planeast y + z = —7 and the point
P(r—1,r—1,r + 1) lies on this plane. Hence,= —2 and the point of
contact isP(—3, —1,—1).

If A =5, then the equation of the planedst y + z = 5 and the point
Q(r — 1,7 — 1,7 4+ 1) lies on this plane. Hence, = 2 and the point of
contact isQ(1, 1, 3).

Example 8.31 Show that the tangent planes at any common point of the
two spheres

S=a>+9?+ 22+ 2ux+2vy+2wz+d = Oand
S =2+ + 2+ e+ Wy + 2z +d = 0

are at right angle ifuu’ + 2vv’ + 2ww’ = d+ d'.
Let P(x1,41, 21) be any common point of the two spheres

S=a?+y*+ 224+ 2ur + vy + 2wz +d = 0 (1)
S =24+ 22+ 20/ c+ Wy + 202 +d = 0 (2)
Therefore
1’3% + ?J% + Z% + 2uxy + 2vy; + 2wz +d = 0 (3)
ety A2 + 20y 20 +d = 0 (4)

The equations of tangent planesity, y1, z1) to the two sphere are

rry +yy1 + 221 +u(z +x1) +o(y +yr) Fw(z+z2) +d =
zry+yyr + 2z +u' (x4 2) F 0 (y+ ) F ' (z+ ) +d =

i.e (x1+u)z+ (y1 +0)y+ (21 + w)z +uxy + vy1 + w21 +d =0 and
(r1+u)z+ (y1 + )y + (21 + ')z + 'z + 'y + 'z +d = 0.
These two planes are perpendicular if

(r1 +u)(zy +u') + (1 +0)(y1 +0') + (21 +w) (21 + ') =0
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22y 422 Fuxy oy Fwzy o'z 'y w2 Hud Fov Fww’ = 0.
Multiplying by 2

202 + 2y2 + 222 + 2uxy + vy + 2wz + 20Ty + 20'y; + 2w’

+ 2uu’ + 20V + 2ww’ =0

(22 + 92 + 22 + 2umy + 2vy1 + 2wzy)

+ (@ + yi + 2 + 20wy 4 20'y1 + 2w z1) + 2un’ + 200" 4 2ww’ = 0.
By using (3) and (4)

—d—d +2uu + 20 +2ww = 0
Quu' 4 200" + 2uww’ = d+d.

Example 8.32 Find the equations of the tangent planes to the sphiere
Y2422 —4x—2y+22—12 = 0 which are parallel to the plang+y+z = 5.
State their points of contact.

Solution: The given equation of sphere is
2?4yt 4+ 2% —de -2y +22—-12=0 (1)

The centre of sphere (5 C(—2,1,—1). The direction ratios of normal
to the planelz + y + z = 5 are4, 1, 1. Equations of line passing through
C(-2,1,—1) and having d.r.s4,1,1 are

x+2 y—1 z+1

1 1 = 1 = T say

Thus,x =4r — 2,y =r + 1,z = r — 1. Using above value ofz, y, z) in
equation (1182 — 18 = 0i.e.r = +1.

Whenr = 1,P(z,y,2) = (2,2,0) and whenr = —1,Q(z,y,2) =
(—6,0,—2). We know equation of tangent plane at point, y1, 21) to
the general equation of spheres

zx1 +yy1 + 2z +u(@ + 1) oy + 1) Fw(z+21) +d=0.
Hence, the equation of tangent planeP4®, 2, 0) to sphere (1) is
dr+y+2—-10=0.

Similarly equation of tangent plane @(—6,0, —2) to sphere (2) islx +
y+2+26=0.
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Example 8.33 Find the equation of the sphere having the circle
x2+y2+22—|—10y—4z—8:O,a:+y+z=3

as the great circle.

Solution: The equation of the sphere passing through given circletiseof
form

224y + 2210y — 42 -8+ ANz +y+2—-3)=0 (1)

The centre of sphere (1) is5*, -5 — 3,2 — 3) . Since given circle is a
great circle of required sphere (1), its centre will lie oe fhlane of the
circlez+y+2=3

- A A

— —5—-=—42—-—=3 ie.A=—4
2 2+ 2

PuttingA = —4 in equation (1) we get

(2 + 92+ 22 +10y —42—8) —4(z+y+2-3) =
2+ 422 —dr+6y—82+4 = 0

Exercise

1. Find the equation of the sphere

(i) whose centre is at origin and radius 5.
(i) whose centre is at—1, 2, 1) and radius 3.

(ii) passing the pointsi(2,3,—1) andB(1,1,0) and whose centre
; z 1 z—
lieson% = L = 252,

(iv) passing through the origin and making equal positiericept

3 units of the axes.

(v) which circumscribes the tetrahedrdm, 0, 0), (1, 0,0),
(0,2,0),(0,0,3).

(vi) through the four pointsd(4, —1,2), B(0,—2,3),C(1,—5,1)
andD(2,0,1).
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. Find the length of the intercept made by the Ifag = 9—16 = &3
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(vii) which passes through three poirts 0, 2), (—1,1,1),
(2, —5,4) and having centre on the li®e: + 3y + 4z = 6.

. Find the centre and radius of the following sphere

()22 +9y2+22 -2 —4y —62+5=0.
(i) 4(z2 + 2+ 22) +6r +4y — 102 —1 =0

. Find the equation of the smallest sphere through, —3,4) and

B(—5,6,-7).

. Find the equation of the sphere described on the join optiets

A(-1,2,3) andB(1, 3, —4) as a diameter.

. Find the co-ordinates of the points in which the line

r—8 gy
= - = — —1

cuts the sphere? + 2 + 22 — 42 + 6y — 22+ 5 = 0.

—1
with the spherec? + 3% + 22 — 22 + 3y — 52 — 31 = 0.

. Find the co-ordinates of the centre and radius of theecircl

ey’ + 27 -2 —4y+22-30=0,2c—y+22-7=0.

. Find the area of the circle cut off the sphere

2?2 + 9% + 2% — 42 + 62 — 3 = 0 by the planer + 2y — 2z = 17.

. Find the area of the circle cut of the sphefe+ y? + 22 = 16 by

the plane—z + 2y + 2z = 9.
Find the equation of the sphere

(i) through the circler? 4 32 + 22 = 9,22 + 3y + 4z = 5 and the
point (1,2, 3).

(ii) through the circlex? + y2 + 22 + 6x — 4y — 62 — 14 = 0,
x +y— 2z =0and the point1, 1, —1).
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11

12.

13.

14.

15.

16.

17.

18.

19.

20.

(iii) passing through the circle? + % + 22 422 + 3y — 6 = 0,
x — 2y + 4z — 9 = 0 and through the centre of the sphere
22+ y2 2220 —4y+62+5=0.

(iv) passing through the origin and the ciralé + 32 + 22 + 2z +
Jy+22—6=0,z+2y+4z+9=0.

Find the equation of the sphere passing through thegoint

(1,0,0),(0,1,0),(0,0,1) and having the radius as small as possible.

Find the positions of the poinf3(1, 1,1), Q(—2, —2, —2) w.r.t. the
spherer? + y2 + 22 — 6z + 4y — 22 — 2 = 0.

Discuss the position of a poift(2, —3,0) w.r.t. the sphere
22+ P+ 22+ 20 —4dy—424+8=0.

Obtain the equation of the circle lying on the sphere
22 +y? + 22 — 22 + 4y — 62 + 3 = 0 and having its centre at
(27 37 _4)

Find the centre and radius of the circle
2+l + 22 -4 +62—-3=0,0+2y—2z=17.

Find the co-ordinates of the centre and radius of théecirc
2P 422 -2 —4dy+22-30=0,20 —y+22—7=0.

Find the angle between the tangent planes to the sphere
22 +y? + 22 + 4z — 6y = 0at(—2,6,2) and(0, —3,3).

If the co-ordinates of pointd, B are(2,2,—-2), (1,—1,1) respec-
tively. Find the locus ofP such thatAP = /2BP. Show that the
locus is a sphere and find its centre and radius.

Show that the sphered + 32 + 22 — 18z — 24y — 40z + 225 = 0
andz? + 12+ 2% = 25 touch each other and find the point of contact.

Show that the plan&r — 2y + =z + 16 = 0 touches the sphere
22 + 9%+ 224 2x — 4y + 22 — 3 = 0. Also find the point of contact.
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21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
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Show that the two sphere$ + y? + 22 — 22 — 6y — 15 = 0 and
1022 + 10y? + 1022 — 20z + 52y + 842 + 214 = (0 touch each other
and find point of contact.

Show that the plane + my + nz = p will touch the sphere
22+ y? + 22 + 2ux + vy + 2wz +d=0if
(ul + vm +wn +p)? = (I + m? + n?)(u? + v* + w? — d).

Find the equations of the two tangent planes to the sphere
2?4+ y? + 22 — 4z + 2y — 62 + 5 = 0 which are parallel to the plane
20+ 2y — 2z = 0.

Show that the spheres$ + y? + 22 — 24z — 40y — 18z + 225 = 0
andz? + 2 + 22 = 25 touch externally and find the point of contact.

Find the area of the section of a sphere with cefitré, 1,2) and
radius 4 which is cut by a plane— y + 2z + 5 = 0.

Find the centre and radius of the section of the sphere
2?2+ y? + 22 —4x + 4y — 62 — 8 = 0 by the
(i) zy- plane (ii)yz- plane (iii) = = 8 plane.

Find the value of for which the planer 4y + z — kv/3 = 0 touches
the spherer? + y? + 22 — 22 — 2y — 22 — 6 = 0.

Find the equation of the sphere having the circle
2?24?2422 -2 -2y —22-22=0,2+2y+22+7=0as the
great circle.

Find the equation of the sphere A as a diameter where
A(2,-3,1) andB(—1,—2,4).

The sphere of constant radiipasses through the origin and meets
the axes in4, B, C. Prove that the centriod of the triangleBC' lies
on the sphere.

A tangent plane at a variable pofat, 3,) on the sphere

2 + 1% + 22 = a® meets the axes iABC. Show that the locus of

1 1

1
the centre of the sphe@ABC'is — + — + 5 = —.
T Y z a
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10.

11.
12.
13.
14.
15.
17.

18.

1
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Answers

() az?+y>+22=25

(i) 22+ 9>+ 22 4+20 —4y —22—-3=0.

(i) 9(22 + y2 + 22) + 180z — 102y + 842 — 96 = 0.
(iv) 22 + 9% + 22 —22 -3y — 32 =0.

WM 2?2 +y?+22—2—-2y—32=0.

i) 2?2 +y? + 22 — 4o+ 6y — 22 +5=0.

(i) 22 +y2 + 22 +4y — 62— 1 =0.

(i) Centre(1, 2, 3) radius= 3. (ii) Centre (52, =2, 2)
2?2 +y? + 22+ 32 -3y + 32— 56 = 0.
242+ 22 —5y+2—-T7=0.

(0,-2,3), (4,—1,2).6.4/54.7.(3,1,1),3V/3

T 9. 7w

)32 +92+2%) —22 -3y —42-22=0

(i) 22 +y? +22 42 +62—-3=0,y+2+1=0.
(iii) 3(2® + y% + 2%) + 8z + 5y + 82 — 36 = 0.

(iv) 3(z% +y?® + 22) + 8x + 13y + 14z = 0.

302 4+3y2+322 -2 —2y—22—1=0.
P inside,Q outside.

P outside the sphere.

2yl +22 20 +4y—62+3=0,2+5y—T7z—45=0.

(3,2,-5),v/716.(3,1,1),3V/3

cosf = =6

7V13
Centrg0, —4, 4), radius= /38

. (2,22,4) 20.(-3,4,-2) 21.(1,-1,-3)

55
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24,

26
27

28.
29.
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2242y —24+10=0,22 +2y — 2 —8=0.
(%.%.8)25. 4

. () (2,-2,0),4 (i) (0,—2,3),+/21 (ii) (2,-2,8),7r =0
.V3+3

3(x? +y? + 2%) + 20 + 10y + 10z — 10 = 0.

2?4+ y?+ 22 -2+ 5y —52+8=0.



Chapter 9
Cones and Cylinders

9.1 Cone

Definition 9.1 A surface generated by a straight line passing through a
fixed point and intersecting a given curve is callediasne.

The fixed point is called theertex of the cone and the given curve

is called theguiding curve. A line which generates the cone is called
a generator.

(AL

D C

Figure 9.1: Cone with a guiding curve

The surface in the Fig. 9.1 is a cone with vertéxThe lineV A as a
generator. The lineg B, V C are also generators. In fact every line joining
V' to any point of the guiding curve is a generator of the cone.

Remark 9.1 If the guiding curve is a plane curve of degreethen the
equation of the cone is also of degreand we call ita cone of order n.
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In this chapter, we study only quadratic cones; i.e. conempadts
equation of second degree:iny andz.

9.2 Equation of a cone

To find the equation of a cone with verté%«, 3, ) and whose guiding
curve is the conic

az? + 2hay + by + 29z + 2fy +c =0,z = 0. Q)

We have to find the locus of points on lines which pass throbghvertex
V(a, B,7) and intersects the given guiding curve. Observe that tha-equ
tions of any line passing through the veriék, 3, v) and having direction
ratiosl, m,n is given by,

r—a _y-p z-v
= = 2
l m n )

Any point on the equation (2) has the coordinates;- it, 5 + mt, v +nt),
wheret € R. If the line (2) intersects the guiding curve given by, (then
we have,

ala + 1t)? + 2h(a + 1t) (B + mt) 4+ b(B + mt)? + 2g(a + 1t)

3
+2f(B+mt)+c=0,(y+nt)=0 @
Eliminatingt, [, m andn between (2) and (3we get

a(az + ya)? + 2h(az +~x)(Bz +vy) + b(Bz + vy)°
+2g(0z +yz)(z —y) + 2f (B2 +7y)(z —y) + c(z —y)* = 0. (4)

This is the required equation of the cone.

Remark 9.2 From the equatior(4) it can be seen that the equation of a
quadratic cone is of second degree in x, y and z; i.e.,

az?® +by? + c2? +2fyz+ 2gzx + 2hay + 2uz + 2vy + 2wz +d = 0 (5)
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Example 9.1 Find the equation of a cone with vertex at the point (3,1,2)
and guiding curve i€z +3y> =1,2=0.

Solution The vertex isV'(3,1,2). Let a, b, c be the direction ratios of a
generator of the cone. Then the equations of generator are,

x—3 y—1 2z2-2

2= = (say) (6)

The coordinates of any point on the generator(8re- at, 1 + bt, 2 + ct).
Forsome € R, (3+at, 1+bt, 2+ ct) lies on the guiding curve. Therefore
2(3 4+ at)? +3(1 4+ bt)2 = 1and2 + ¢t = 0. Thus, t = =2. From this

we get,
9 2 9 2
2(3——a) +3<1—_b> —1
C C
From (6) we obtain2[3 — 2(2=3))? + 3[1 — 2(45))* = 1 so

203(z —2) —2(x = 3)2 +3[1(z —2) — 2(y — 1)) = (» — 2)°.
After simplification, the required equation of the cone is,

2x2+3y2+522—3yz—6xz—|—z—1:0.

9.3 Cone with vertex at the origin
Recall that the general equation of second degree equation i
az? + by2 + 2%+ 2fyz + 2gzx + 2hxy + 2uzr 4 2vy + 2wz + d = 0.

If any one of the constants, v, w andd is non-zero, then the equation is
non-homogeneous in, y andz. If each of the constants, v, w andd, is
zero, then the resulting equatian;? +by? +cz? +2fyz +2gzx +2hxy =

0, is a homogeneous second degree equatiangrandz.

Theorem 9.1 The equation of a cone with vertex at the origin is a homo-
geneous second degree equation.
Proof. Let the equation of a quadratic cone with vertex at the offigin
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az? 4+ by? + c2® + 2fyz + 2gzx + 2hay + 2ux + 20y + 2wz +d = 0 (7)

We will show thatu = v = w = d = 0. Let P(z/, 4, 2’) be any point
on the cone given by (7B8ince0(0,0,0) is the vertex, the lin@P is a
generator of the cone. The equation of the lin2 is given by,

Y

Thus the coordinates of any point on the li@&> are (ta/, ty/, tz’).
SinceOP is a generator, these coordinates satisfy the equation (7)
calta)? b(ty')? + e(tz) + 2f (ty)(t2))
+2g(t2")(tz') + 2h(tx") (ty') + 2u(tx’) + 2v(ty’) + 2w(tz’) + d = 0.
This equation can be written as,

T y z
7= t(say)

(az”? + by + 2 + 2fy/ 2 + 292"’ + 2ha’y/ )t
+2(ux’ + 2vy + 2w )t +d =0 (8)

Observe that (8) is a quadratic equation Yor € R. This is possible
only if each of the coefficient i8. Therefore,

az’? + by’ + c2'? + 2fy' 2 + 292’2’ + 2ha’y’ = 0,
uz’ +2vy' + 2wz =0and d=0.

We now claim that each of the constantsy andw are zero. For if not
i.e. if at least one of the constants is not zero, then thetemuax +

vy + wz = 0 would represent a plane and the paint, v/, 2’) lies on the
plane. As the poinfz’, 3/, 2’) lies on the surface (7) , it would mean that
the surface (7) is a plane. This is impossible as it represenbne. Hence
u = 0,v = 0,w = 0 and we also havé = 0. So that the equation of a
cone with vertex at the origin is of the form,

ax® + by? + c2? + 2fyz + 2gzx + 2hxy = 0,

which is a homogeneous iny andz. |}
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Note that the converse of this theorem is also true.

Theorem 9.2 Every second degree homogeneous equatian inz rep-
resents a cone with vertex at the origin.
Proof. Consider the homogeneous equation of second degreg)ir

ie. ax® 4 by? + cz? + 2fyz + 29z + 2hay =0 9

The coordinates of the origin satisfy the equation (T®us, the origin
O lies on the surface given by (et P(z’, 3/, z’") be any other point on
the surface given by (10)

coax? + by + e+ 2fy' Y 4 297 2" + 2ha’y’ =0 (10)

Now we show that the liné@ P lies on the surface given by (9Fhe
equation of the lin@ P is,

z
;:;:;:t(say)

The coordinates of any point on the lideP are (tz',ty’,tz’). Thus
substituting these coordinatesin/.S. of (9) we have,

a(tz’ )2+ bty )2+ c(t2) 2+ 2f (ty') (t2') + 2g(t2") (tx) + 2h(ta’) (ty)
= t*(ax? +by? + c2? + 2fy' 2 + 2922’ + 2ha'y))

= t%0) ...(9)

= 0.

Hence, the point with coordinatés:’, ty', tz’) satisfies (9)Therefore any
point on the line) P lies on the surface given by (9)hus (9) is the surface

generates by P. Therefore the equation (9) represents a cone with vertex

at the origin.

Remark 9.3 If the line with equation,7 = % = Z is a generator of a

n

cone with vertex at the origin, then the direction ratips:, n satisfies the
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equation of the cone.
Let the equation of the cone be,

az? 4+ by? + ¢2® + 2fyz + 2gzx + 2hay = 0.

The coordinates of any point on the line die, mt, nt), wheret € R.
These coordinates satisfy the equation.

a(lt)? 4+ b(mt)? + c(nt)? + 2f (mt)(nt)
+2g(nt)(It) + 2h(It)(mt) =0
t2(al® 4+ bm? + en® 4 2fmn + 2gnl + 2him) = 0.

This equation holds of all values of

coal? +bm? + en® + 2fmn + 2gnl + 2him = 0.

Thus, it follows that the direction ratios of a generatorsfathe equa-
tion of the cone.

Also, it is easy to see that if the direction ratipsn, n of a generator
of a cone with vertex at the origin satisfy the equatigh m,n) = 0, then
the equation of the cone iz, y, z) = 0. [ |

Remark 9.4 The general equation of a quadratic cone with vertex at the

origin is,
ax® + by? + c2® + 2fyz + 2gzx + 2hxy = 0.

Let the origin be shifted to the poiff(«, 3,~). In the new coordinate
system the above equation becomes,

a(z — a)? +b(y — B)* +c(z —7)?
+ 2f(y = B)(z —7) +29(2 —7)(x — a) + 2h(z — a)(y — B) = 0.

This is a general equation of a quadratic cone with vertéxat, ).
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9.4 The Right circular Cone

Definition 9.2 A right circular cone is a surface generated by a straight
line passing through a fixed point and making a constant ahgléh a
fixed straight line passing through the given point. The figeht is called
asthe vertex of the right circular cone, the fixed straight line is called
asthe axis of the cone and the constant anglés called aghe semi —
vertical angle of the cone.

Remark 9.5 Every section of a right circular cone by a plane perpendicu-
lar to its axis is a circle.

Let # be the semi - vertical angle of the cone antle a plane perpen-
dicular to the axis/ N see Fig. 9.2 of the cone. We show that the section
of the cone by the plane is a circle.

S

B
Figure 9.2: Section of a cone with a plane

Let P be any point of the section of the cone by the pland.et A
be the point of intersection of the axisN and the planex. Then AP
is perpendicular td” A. In the right angled trianglé” AP, tanf = %.
.. AP = AV tan 6. Since,AV andtan 6 are constant. it follows thal P
is constant for all point$> on the section of the cone by the plameThus
the section is a circle.
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9.4.1 Equation of a right circular cone

To find the equation of a right circular cone with a veriéxa.3,~) and
whose axis is the linef7< = % = =, with a semi-vertical anglé.

Let V N be the axis of the cone and IB(z, y, z) be any point on the cone.
The direction rations of the generafgtP arex — o,y — 3,2 — 7.

Vv
0

P

Figure 9.3:

Let P be any point of the section of the cone by the pland.et A
be the point of intersection of the axisN and the planex. Then AP
is perpendicular td/ A. In the right angled triangl®” AP, tan§ = ﬁ—{j.
.. AP = AV tan6. Since,AV andtan # are constant. it follows that P
is constant for all point$> on the section of the cone by the planeThus
the section is a circle.

The angle betweelr P andV' N is 0(see F'ig. 9.3). As the direction
ratios of the axid’ N arel, m,n, we have,

Wz —a)+m(y—p)+n(z—1)
VE4+m2+n2/(z—a)2+(y—B)2%+ (2 —7)2

cosf =

Therefore, the equation of the right circular cone is,

[z — @) +m(y — B) +n(z =) =
(4 m? ) [ = ) + (5 = B + (= = 7)*] cos?0

The following example will make the above proof more clear.
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Example 9.2 Find the equation of the right circular cone with vertex at
i - 1 —
(2,—1,4), the lineZ—2 — Y= _ 2

12 -1
anglecos~!(4/v/6).
Solution. Let P(z, y, z) be any point on the cone with vertéX(2, —1,4).
Then the direction ratios of a generald® arex — 2,y + 1,z — 4. The

1 -4
y;r _Z T arel,2,—1. Letd be
the semi-vertical angle. Henoeys 0 = %. From Remark, we have,

4 ) ) .
as the axis and semi-vertical

. . . x—2
direction ratios of the aXLg,C 1 =

(lr—2)4+2(y+ 1)+ (-1)(z2—4)

cosf =
VIH4+1/(x—2)2+ (y+1)2+ (2 — 4)2
4 a:—|—2y—z+4
VB VB w22t (gt 12+ (= AP

Hence, the required equation of the right circular cone is,
16[(x =22+ (y+1)?+ (2 —4)?% = (z+2y — 2 +4)?
i.e.

1522 +12y% + 1522 — 4yz — 222 = dzy — 80z + 16y — 1202 + 320 = 0

9.5 Cylinders

Definition 9.3 A surface generated by a straight line which always re-
mains parallel to the given fixed line and which intersectshi® given
curve is calledz cylinder. The straight lines which generate the cylinder
is called aghe generator®f the cylinder and the given curve is called as
the guiding curve.

9.6 Equation of a cylinder

To find the equation of the cylinder whose generator intésstne conic,

ax? + 2hxy +by? +2gx+2fy+c = 0, z = 0 and are parallel to the line,
Ty z

l m n
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Let P(z,y, z) be any point on the cylinder. Then generator throéyh
. . Y z
is parallel to the line- = = = —. Hence thed.r.s of the generator are
m n
I,m,n. The equation of the generator througis,

T—T1 _ Y—UY z—2z

I m  n
The point of intersection of the generator and the plare0 is given by,

T _ Y- 0—2=

Iz mz
r=r1—-—, Y=y - —.
n n

Therefore the coordinates of the point of intersection efdkenerator

Iz o
and the plane = 0 are,(z1 — —, Y1 — = ,0). But this point lies on the
n

guiding curveaz? + 2hzy + by + 29z +2fy+c=0.

lz1 9 Iz mzi _mz
- — 2h ——)+b
a(zy — — =)+ 2h(z1 — —=)(y1 — = =) + by

)2
+2g<x1——>+2f<1—%>+c:o

Hence, the locus of P is,

(e — 2 4 2w — )y~ "2) by - "2y

l
29— 2 +2f (Y — =)t e=0
n n
which when simplified, gives the equation of the cylinder as,

a(nz — 12)? 4 2h(nz — 12)(ny — mz) + b(ny — mz)?

+2gn(nz — 12) + 2fn(ny — mz) + en® = 0
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Example 9.3 Find the equation of a cylinder whose generators are phralle

to the Iineg = % = %and whose guiding curve is the ellipgé&+2y? = 1
andz = 0.

Solution. Let P(x1,y1,21) be any point on the cylinder. Then the gener-

ator throughpP is parallel to the Iineg = % = g Therefore the equation
of the generator througR are,
r—r_Yy—n _ 2T
2 1 3
Coordinates of any point on this line are, +2t, y; +t, 21 + 3t). For some
t, this point lies on guiding curve? + 2y = 1, z = 0.

(1 4+ 262 +2(y1 + 1) =1 (11)

= t(say)

also,
S +3t=0,- t= _Tzl
Substituting the value aofin (11), we get
(1 -23) 2 - 3 =1
S (8w —221)2 +2(3y1 — 21)* =9
Hence, locus oP is, (3 — 22)2 +2(3y — 2)? = 9.
i.e.9z% + 18y> + 6y — 1222 — 12yz — 9 = 0,

i.e.3z% + 6y2 + 2y2 —dxz —4yz—3=0

9.7 Right circular cylinder

Definition 9.4 A cylinder is called aright circular cylinder if its guid-
ing curve is a circle and its generators are lines perpefatito the plane
containing the circle. The normal to the plane of the guidiirgle pass-
ing through its centre is called as theis of the cylinder. If we take a
section of the cylinder by a plane perpendicular to the alkikecylinder,
then this section will be a circle. The radius of this cirdecalled as the
radius of the cylinder.
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9.7.1 Equation of a right circular cylinder

To find the equation of the right circular cylinder whose agithe line
L3298 _ 277 sndradiusis. The pointA(a, 3, 7) lies on

l m n
the lineL whose d.r.s. arE m,n. Let P(z,y, z) be a point on the cylinder
see Flig. 9.4
Draw PM perpendicular to the axis of the cylinder. ThBd/ = r. Now,

AP? = (z-a)P’+(y-B)’+(z—7)
MA = projection of AP on the azis
Wz —a)+m(y —B) +n(z — )

Now, from the right angled\ AM P , we get

S MA =

I
T
S

AP? — MA®

(z— )+ (y— B)* + (2 —7)?

B (l(x—a)—i—m(y—ﬁ)‘f'n(Z—V))Q 2
VE+mZ+n2

which is the required equation of the cylinder.

Example 9.4 Find the equation of the circular cylinder of radiBsand
axis passing througl2, —1,3) and having direction cosines proportional
t01,2,—2.

Solution. Let A(2,—1,3) and P(x,y, z) be any point on the cylinder.
Draw PM perpendicular to the axis of the cylinder. Thed/ = 3. By
the distance formula,

AP* = (-2 +(y+1)"+ (2 -3)
MA = projection of AP on the axis
Iz —2)+2(y+1)—2(z—3)
V12422 4 (-2)?
T 42— 2y +6
3

MA =

MA =
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T
|
o5

Axis

R
~

Figure 9.4:

Now, from the right angled triangl& AM P, we haveAP? — M A? = 9.
Substituting the value o P and M A, we get
8x2+5y2+5z2+8yz—|—4zx—4my—483:—6y—30z+9=0,

which is the required equation of the cylinder.

9.8 lllustrative Examples

Example 9.5 Find the general equation of the quadratic cone with the ver-
tex at the origin and passing through the three coordinags.ax

Solution. The vertex of the cone is the origin.Hence its equation is-a ho
mogenous equation of degrgén x, y, z. Let the equation of the cone be,

az? 4+ by? + cz® + 2fyz + 2gzx + 2hay = 0 (12)

The cone given by (12) passes through the three co-ordiete dhere-
fore z,y andz axes are the generators of the cone. The direction ratios o
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x,y andz axes satisfy the equation (12).r.sof the X — azis arel,0,0;

d.r.s of theY — axis are0, 1,0 andd.r.s of the Z — axis are0, 0, 1. From
these conditions we get= 0,b = 0 andc = 0. Substitutinga = 0,5 =0
andc = 0in (12), we get the general equation of the cone which passes
through the three co-ordinate axes as

2fyz + 2gzx 4+ 2haxy = 0i.e. fyz + gzax + hay = 0.

Example 9.6 Find the equation of the cone which passes through the axes
of co-ordinates and contains the poifits1, 1) and(1, -2, 1).

Solution. As the cone passes through the three co-ordinate axes rthe ve

of the cone is at the origin.Hence the equation of the conétlsedorm’

fyz+gze +hxy =0 (13)

The cone passes through the poifits1, 1) and (—1,2,1). Co-ordinates
of these two points satisfy the equation (13)

f+g9g+h=0 and 3f—g—2h=0
Solving the equations faf, g andh ,we get

f g h
1T g T M)
f=—k g=4k, h= -3k
Substituting the values of, g and h in (13) we get the equation of the
required cone as,

—kyz + 4kzx — 3kxy = 0i.e.yz — 4zx + 3zy = 0.
Example 9.7 Find the equation of the cone passing through the co-omlinat
axes and having the lineg, = L = Zandl = L = % as genera-
o -2 3893374

Solution. As the cone passes through the three co-ordinate axes, b ve
of the cone is at the origin. Hence the equation of the conétlsedorm

fyz+gze +hzxy =0 (14)
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Giventhat the lineg = %5 = £ and { = %5 = § are the generators
of the cone, thug.r.s of the lines satisfy the equatiqs.8.3)

F(=2)(3) +9(3)(1) + h(1)(=2) = 0
and  f(=1)(=1) +g(=1)(3) + h(3)(=1) =0

—6f+3¢g—2h=0 and f—39g—3h=0.

Solving these two equations fgt g andh we get

f_g9g_h _
T aT g M)

f=—15k, g=—20k, h=15k.

Substituting the values gf, g andh in (8.8.3), we get the equation of the
required cone as

—15kyz — 20kzx + 15kzy = 0i.e. 3yz + 4zx + 3zy = 0.

Example 9.8 Show that the line; = % = Z is a generator of the cone
22 +y? + 2% + day — 22 = 0.
Solution. The equation of the cone is,

P+ + P2 Aoy —x2=0 (15)

which is a homogenous equation. Hence the vertex of the cothei
origin. If we show thatd.r.s of the line§ = % = £ satisfy the equation
(15), then we can say that the given line is a generator of the caea by
the equation (15)d.7.s of the line§ = % = £ are2, —1, 3. Substituting
these values i.. H.S. of (15) we get,

22+ (—1)2 432+ 4(2)(-1) — (2)(3).

Which is equal td). Thus, the line = % = £ is the generator of the
given cone.
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Example 9.9 Show that the equation
4o —y? + 222 + 20y —3yz + 122 — 11y +62+4=0

represents a cone with with vertex at the pgint, —2, —3)
Solution.

4x2fy2+222+2xy—3yz+12x—11y+6z+4:0 (16)

Shift the origin to the point—1, —2, —3). Let (z,y, 2) and (2,4, 2’) be
respectively the old and new co-ordinates of the points erctine. Then
r=a—1,y =1y — 1,2 = 2/ — 1 Substituting in to the equation (16) we
get

A =17 = (¢ =2 +2(' = 3)” + 22" = 1)(y ~ 2)
=30y —2)(7 = 3)+12(2' — 1) —11(y) —2) +6(¢' —=3)+4=0

On simplification gives

4o —y? 4222+ 22"y — 3y =0 a7

The equation (17) is a homogeneous equatiari iy, z’. Hence the equa-
tion (17) represents a cone with vertex at origin in the nevoicbnate sys-
tem. Thus the equation (16) represents a cone with vertexlat-2, —3).

Example 9.10 Find the equation of the cone whose vertex is at origin and
the guiding curve is a circlg? + 22 = 16,2 = 2. Show that section of the
cone by the plane = 1 is a hyperbola.

Solution. Since the vertex of the cone is at origin, the equation of tdmec

is a homogeneous equationaty, z. Consider the equation of the guiding
curvey? + 22 = 16,z = 2. We make one of the equations homogeneous
with the help of the other. We makg + 22 = 16 homogeneous with the
help ofz = 2

2
y2+z2:16><12_'_ y2+z2:16x(§> , since 3:1
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Hence the equation of the conetis? — y? — 22 = 0. Now the section of
the cone by the plane= 1 s,

4o — 2 —12=0, z=1lie 42?2—¢y?=1, 2=1
which is a hyperbola.

Example 9.11 Find the equation of the cone with its vertex at the origin
and whose guiding curve is given by + 32 + 2% — 22+ 2y + 42— 3 = 0,
2?4 y? + 22+ 20+ 4y + 62 —11=0.

Solution. Since the vertex of the cone is at origin, the equation of trec

is a homogeneous equationaittyy, z. The equation of the cone is obtained
by making the equation

24?422 -2 42 +42—-3=0 (18)
homogeneous with the help of the equation
224y 422 424y +62—11=0 (19)
Subtracting the equation (18) from the equation (19) we get

20 +y+z

4 +2y+22—-8=0 1

-1 (20)

using (20) we make the equation (17) homogeneous as follows,

2

2 2 2
+2y< x+4y+z> +4Z< x+4y+z) _3( a:+4y+z> _0

Simplification yields,
1222 — 21y — 2922 — 18yz — 1222 + day = 0

which is the required equation of the cone.
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Example 9.12 Find the equation of the right circular cone which passes
through the poin{1, —2,3) whose vertex is a2, —3,5) and whose axis
makes equal angles with co-ordinate axes.

Solution. We are given that axis of the right circular cone makes equal
angles with co-ordinate axes .Therefore dhes of the axis ard, 1, 1. Let
A(1,-2,3) andV (2, —3,5) . Therefore thel.r.s of VAare2 —1,-3 +

2,5 — 3i.e.l,—1 and2 respectively. Let) be the semi vertical angle. The

0 is the angle between the axis of the cone &ntl

1(1) +1(-1) + 1(2) 2
V1212124 (12422 V3V6
Let P(z,y, z) be a point on the right circular cone. TheiP is a generator

and itsd.r.s arex — 2,y + 3,z — 5. Thend is the angle betweeW P and
the axis

cos ) =

(21)

I(z—2)+1(y+3)+1(z—5)
VI24+12+12/(z —2)2 + (y — 3)2 + (2 — 5)?

From (21) and (22) we get

cosf =

(22)

2 r+y+z—4
V3VE Bz =22+ (y—3)2+ (2 — 5)?
ie. 2[(x =224+ (y—3°+(z-52 =3 +y+2z—4)>

which is the required equation of the right circular cone.

Example 9.13 Find the equation of the right circular cylinder of raditis
whose axis passes through 2, 3) and hasi.c.s proportional ta2, —3, 6.
Solution. Let A(1,2,3) and P(z,y, z) be a point on the cylinder. Draw
PM perpendicular to the axis of the cylinder. Thé&W/ is the radius
of the cylinder soPM = 2.. By Distance formulaAP? = (z — 1)? +
(y — 2)? + (2 — 3)2. Let M A pbe the projection ofiP on the axis..".
MA = 2(z—\1/)2—2?—;i_((y_—32))2—:66(;—3) as d.r.s of the axis ate —3, 6. Thus,M A =
27 — 3y + 62 — 14

7 :
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Now from the right angled\ AM P, we getAP? — M A% =9

((x—1)2+(y—2)2+(z—3)2)—(2'%_39;62_14) =9

Simplification of the equation gives the required equatibthe right
circular cylinder as

4522 + 40y + 1322 436y 2 — 24zx + 120y — 422 — 280y — 12624294 = 0.

9.9 Exercise

1. Find the equation of a cone whose vertex i6-t, 1, 2) and guiding
curve is3z? —y? =1;2 = 0.

2. Find the equation of a cone with vertex at the origin andaiaimg
the curver? + y? = 4;2 = 5.

3. Find the equation of a cone whose vertex i§lat, 3) and passing
throughdz? + 22 = 1;y = 4.

4. The axis of a right circular cone with vertex at the origimkas
equal angles with the coordinate axes. If the cone passesginr
the line drawn from the origin with direction ratioris—2, 2, find
the equation of the cone.

5. Find the equation of the cylinder whose generators arallpbto

the line6x = —3y = 2z and whose guiding curve is the ellipse

22+ 2% =1;2=3.

6. Lines are drawn parallel to the lifg2 = -1 = 25 through the
points on the circle:? +y? = a? in ZOX —plane. Find the equation
of the surface so formed.

7. Find the equation of the right circular cylinder of raduand having

as axis the ling5! = 422 = 233,

222

(0]

10

11.

12.

13.

14.

15.

16.

17.
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. Find the equation of the right circular cone haviR@@, —3,5) as a
vertex; axis PQ which makes equal angles with coordinats ard
the semi vertical angle 30°

. Show thatr? + 2y? + 22 —4yz — 622 — 20 + 8y — 22+ 9 = 0
represents a cone with vertex(at —2, 0).

. Find the equation of a cone with vertex the origin and lzasiecle
in the planez = 12 with centre(13,0, 12) and radius 5.Also show
that the section of any plane parallelic= 0 is a circle.

Find the equation of the right circular cylinder of resluiwhose axis
passes throudh, 2, 3) and has d.r.2, —3, 6.

Find the equation of a cone whose vertex is at the origird&ection
ratios of whose generators satisfy the equasiBn- 2m? +5n? = 0.

The equation of a cone:dg + 2y% + 22 — 2yz + 2o — 3y = 0. Test
whether the following lines are generators of the cone.
@z=-y=z20z=y=20Q5=4=55=%=3

Find the equation of a cone with vertex at the origin anitivpasses
through the curve
2242+ 22— 29+ 32
222 -3y 44z =

Find the equation of the right circular cylinder of resluiwhose axis

: .ox—1 3 -2
lies along the line” e .
2 -1 )

Obtain the equation of the right circular cylinder whageding
curve is the circler? + 42 4+ 22 —9=0;2 —y+2 -3 =0.

Lines are drawn through the origin having directionasii, 2, 2;
2,3,6; and 3,4, 12. Show that the axis of the right circular cone
through them has d.c%%% and the semi vertical angle of the
cone is —-. Also obtain the equation of the cone.
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18. Show that the equati®y? —8yz —4zx — 833y—|—6m—4y—22+5:0

represents a cone whose vertexis, 1, 2)

19. Determine the equation of the right circular cone hawiegex at
(2,3,1), axis parallel to the lin€x = —y = —2z and one of its
generators having d.r.$,1, 1.

20. Find the equation of the right circular cone generatedhlylines
drawn from the origin to cut the circle through the poi(is2, 2),
(2,1,-2) and(2,—2,1).

21. Find the equation of the cone with vertex at the origin@maining
the curveax? + by? = 2z; 1oz + my + nz = p.

22. Obtain the equation of the right circular cone which isegated by
revolving the line whose equations &8¢ —y + z = 1;5z +y +
3z + 1 = 0 about the y-axis.

23. Find the equation of the cone which passes through thelicate
axes and has two generators having direction ratios 1,2, 22a+2,1.

24. Obtain the equation of the cone which passes throughothrelinate

axes and has the Iine;s = % =z andi _¥_ 2 as its

3 -3 1 -2
generators.

9.10 Answers

(1) 1222 — 4y% + 22 +4yz—|—122m—|—4z—4—0

(2)25(:1: +y) 422 = 0.

(3) 1222 + 4y* + 322 + 6yz + 8xy — 32z — 34y — 242 + 69 = 0.

(4) 42% + 4y + 422 + 9yz + 922 + 9y = 0.

(5) 322 + 6y? + 322 + S8yz — 2zx + 62 — 24y — 182 + 24 = 0.
()(mx—ly)z’f(mz—ny) = m?a?.

(7) 522 4 8y? 4 522 — 4yz — 8za — 4wy + 22x — 16y — 142 + 26 = 0.
(8) 522 + 5y + 522 — 8yz — 8zx — 8xy + 8x + 86y + 278 = 0.

(10

6
7
8
10) 622 + 6y* + 622 — 1322 = 0.
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11) 92y + 2 — 7)2 + 4(2 — 32)® + (32 + 2y — 7)% = 196.
12) 322 — 2y% + 522 = 0.
13) (b) and(c) are generator&;) and(d) are not generators.
14) 22 +y*> — 22 = 0.
15) 222 + 9% — 3yz + 422 — 52y = 0.
16) 2622 + 29y% + 522 + 10yz — 24zx — 4y + 150y + 302 + 75 = 0.
17

22) apx? + bpy? — 2nz? — 2myz — 2lzzx = 0.

)
)
)
)
]
Y2+ 2+ 22—z +ay =0.(18) yz — zx — xy = 0.
)
;
23) 22 — 5y? + 22 — 10y — 5= 0.

)
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