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CHAPTER 1

Real Numbers

1.1 Introduction

In this chapter, we shall study some basic properties of Real Numbers. We
shall assume the familarity of the students with the sets of Natural Numbers,
Integers and Rational Numbers. The set of real numbers can be constructed
from the set of rational numbers or can also be defined axiomatically. However,
the rigourous definition, in either of these two ways, is beyond the scope
of this book. Here, we shall state the properties of real numbers that are
used in the sequel. These properties can be classified in three catergories:
Alegebraic Properties, Order Properties and the property of ’Completeness’.
The algebraic and order properties have been used in high school mathematics.
However, the completeness property is not studied before. The completeness
property of real number system is most crucial in Calculus. In fact, the theory
of calculus is founded on the completeness property of the real number system.
Thus the emphasis of the present discussion is on the completeness property
and its consequences. The students are advised to focus on the completeness
property and urged to understand its fundametal role in the theory of calculus.

We now state the algebraic and order properties of real numbers.

(Algebraic Properties) : There are defined on R two binary operations,
namely addition (+) and multiplication (.) which satisfy the following prop-
erties:

(i) Commutativity : For all a, b ∈ R, a+ b = b+ a and ab = ba.

(ii) Associativity : For all a, b, c ∈ R, a+(b+c) = (a+b)+c, a·(b·c) = (a·b)·c.
(iii) There exist in R, two elements 0 and 1 such that 0 6= 1 and for all
a ∈ R, a+ 0 = a and a · 1 = a.

(iv) For every a ∈ R, there is an element −a in R such that a+ (−a) = 0.

(v) For every a ∈ R with a 6= 0, there is an element a−1 in R such that
a · a−1 = 1.

(vi) Distributive Law : For all a, b, c ∈ R, a · (b+ c) = a · b+ a · c.

Note : We write ab in place of a · b. The operations of subtraction and division
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are defined as follows: for a, b ∈ R,

a− b = a+ (−b) and if a 6= 0, then
a

b
= ab−1.

As R possesses the above algebraic properties, R is called a field.

(Order Properties) : There is defined on R a relation, called an order
relation and denoted by <, which satisfies the following properties:

(vii) For all a, b ∈ R, exactly one of the following statements is true:
a < b, a = b, b < a.

(viii) Transitivity: For all a, b, c ∈ R, if a < b and b < c then a < c.

(ix) For all a, b, c ∈ R,
(α) a < b ⇒ a+ c < b+ c and

(β) a < b and 0 < c ⇒ ac < bc.

This last property states the relation between the algebraic operations and
order.

We write a < b < c to mean [a < b and b < c], a ≤ b to mean [ a < b or a =
b], and b > a to mean a < b.

Statements such as a < b, a ≤ c are called inequalities. We say that a real
number a is positive or negative according as a > 0 or a < 0.

The following are basic properties of inequalities:

1) a > b ⇔ a− b > 0.

2) a > 0 ⇔ − a < 0.

3) [a > 0 and b > 0] ⇒ ab > 0.

4) If a < b then ac < bc if c is positive and ac > bc if c is negative.

This latter result says that multiplication by a negative number reverses the
direction of inequality. For example,

2 < 5 ⇒ 2(−3) > 5(−3) ⇒ − 6 > −15.

5) a < b and c < d ⇒ a = c < b+ d.

This says that, like equations, we may add inequalities (in the proper order).

6) [0 ≤ a < b and 0 ≤ c < d] ⇒ ac < bd.

This says that we may multiply inequalities when no negative numbers are
involved. But this is false if negative numbers are involved. For example, it is
true that 2 < 5 and −3 < −2. But it is not true that −6 < −10.

7) [0 ≤ a < b and 0 < c < d] ⇒ a/d < b/c.

8) a 6= 0 ⇒ a2 > 0. In particular, 1 > 0 since 1 6= 0 and 1 = 12.

9) a > 0 ⇒ 1/a > 0. Also, a > b > 0 ⇒ 1/a < 1/b.
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10) a > 1 ⇒ a2 > a and 0 < a < 1 ⇒ a2 < a.

11) Let b > 0, y > 0. Then

a

b
<
x

y
⇒ a

b
<
a+ x

b+ y
<
x

y
.

12) Let a < b+ ε for every positive number ε. Then a ≤ b.
This result is often useful. To prove it, let a > b, if possible. Then a− b > 0.
Hence taking ε = a− b we get a < b+ (a− b) or a < a. This is a contradiction.
Hence a ≤ b.

Definition: Suppose S is a non-empty subset of R. A real number a is called
a minimum element of S and we write a = minS if (i) a ∈ S and (ii) a ≤ x
for all x in S.

A real number b is called a maximum element of S and we write b = maxS
if (i) b ∈ S and (ii) x ≤ b for all x in S.

A minimum element of S is unique (if it exists). To see this, let a, a′ be
both minimum elements of S. Then by definition, we must have a ≤ a′and
a′ ≤ a. Hence a = a′. Similarly, a maximum element of S is unique (if it
exists).

1.3 Rational Numbers

We denote by N, Z and Q the set of all Natural numbers, Integers and Rational
numbers respectively.

The following property of N is equivalent to the Principle of Mathematical
Induction:

Well-odering principle : Every non-empty subset of N contains a minimum
element.

Also note that

(i) 1 = minN and if n ∈ N and x ∈ R are such that n < x < n+1, then x 6∈ N.
(ii) The set of all rational numbers is an ordered field (like R).

(iii) Q is a dense set. That is, between any two distinct rational numbers there
is a rational number.

For, if a, b ∈ Q, and a < b, then c = (a+ b)/2 ∈ Q and a < c < b.

1.5 Absolute Value

Definition: For every x ∈ R, the absolute value of x is denoted by |x| and is
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defined as follows:

|x| =
{
x if x > 0
−x if x ≤ 0.

In other words, |x| = max{x,−x}.
For example, |2| = 2, | − 3| = 3, |0| = 0.

Also, if real numbers a, b correspond to points A,B on the real line, then
we define the number |a− b| to be the (non-negative) distance between A and
B.

Let x, y, a, b be any real numbers. We now list properties of absolute
value. Most of them can be proved by considering cases. The results 8,9,10
are particularly important.

1. |x| ≥ 0. Also, |x| = 0 if and only if x = 0.

2. | − x| = |x|. Hence |x− y| = |y − x|.

3. |xy| = |x||y|.

4. |x2| = |x|2 = x2.

Hence |x| is the non-negative square-root of x2.

5. |x/y| = |x|/|y|, if y 6= 0.

6. Let a ≥ 0. Then |x| ≤ a if and only if −a ≤ x ≤ a.
To prove |x| ≤ a⇒ −a ≤ x ≤ a, let |x| ≤ a. Then

x ≥ 0⇒ [−x ≤ 0 ≤ a and x = |x| ≤ a] so that −a ≤ x ≤ a.
x < 0⇒ x < 0 ≤ a and −x = |x| ≤ a and so −a ≤ x ≤ a again.

The converse can be proved similarly.

7. −|x| ≤ x ≤ |x|.

8. |x± y| ≤ |x|+ |y|.
For, by 7, −|x| ≤ x ≤ |x|, − |y| ≤ y ≤ |y|.
Hence adding we get −(|x|+ |y|) ≤ x+ y ≤ |x|+ |y|.
So by 6, |x+ y| ≤ |x|+ |y|.
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Alternatively, it is easy to see that |x + y| = |x| + |y| if x, y have the
same sign and |x+ y| < |x|+ |y| if x and y are of opposite signs.

Replacing y by −y in the last result we get

|x− y| ≤ |x|+ | − y| = |x|+ |y|.

9. ||x| − |y|| ≤ |x± y|.
For, |x| = |(x− y) + y| ≤ |x+ y|+ |y|.
Hence |x| − |y| ≤ |x+ y|.
Also, −(|x| − |y|) = |y| − |x| ≤ |y + x| = |x+ y|.
So by 6, ||x| − |y|| ≤ |x+ y|. Finally, replacing y by −y,

|x− y| ≥ ||x| − | − y|| = ||x| − |y||.

10. Let |a| 6= |b|. Then ∣∣∣x+ y

a+ b

∣∣∣ ≤ |x|+ |y||a| − |b|
.

For by 8 and 9,

0 ≤ |x+ y| ≤ |x|+ |y| and 0 < ||a| − |b|| ≤ |a+ b|.
Hence by 5 above and 7 of §1.2 we get∣∣∣x+ y

a+ b

∣∣∣ =
|x+ y|
|a+ b|

≤ |x|+ |y|
|a| − |b|

.

11. Let a > 0. Then |x− y| < a ⇔ y − a < x < y + a.

12. Let a > 0. Then |x| ≤ a ⇔ x2 ≤ a2

and |x| > a ⇔ x < −a or x > a.

13. If a1, a2, . . . , an are any finitely many real numbers, then

|a1 + a2 + · · ·+ an| ≤ |a1|+ |a2|+ · · ·+ |an|.

Notation: Given a, b ∈ R, a < b, we define the following sets:

[a, b] = {x ∈ R | a ≤ x ≤ b},

(a, b) = {x ∈ R | a < x < b},
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[a, b) = {x ∈ R | a ≤ x < b},

(a, b] = {x ∈ R | a < x ≤ b}.

The set [a, b] is called a closed interval with end points a,b and length b−a.
The set (a, b) is called an open interval and [a, b) and (a, b] are called half
open/half closed intervals.

In calculus many times we need to consider a set of those points which are
near a given point. Such a set is called a neighbourhood of the given point.
Thus given a number a and a positive number δ, we write

N(a, δ) = (a− δ, a+ δ)

and call this open interval the δ-neighbourhood (briefly, δ-nhd) of a. In other
words, N(a, δ) is the set of those points which are distance less than δ from
a :

N(a, δ) = {x | |x− a| < δ}.

Also, omitting the point a from N(a, δ) we obtain the deleted δ-nhd of a, which
is denoted as N ′(a, δ). Thus

N ′(a, δ) = N(a, δ)− {a}
= (a− δ, a) ∪ (a, a+ δ)

= {x | 0 < |x− a| < δ}.

1.6 Supremum and Infimum

Definition : Let S be a non-empty set of real numbers. Then Fig.1
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(i) S is said to be bounded above if there is a real number a such that x ≤ a
for all x ∈ S. Also, then a is called a rough upper bound or just an upper bound
for S. See Fig.1(i).

(ii) S is said to be bounded below if there is a real number b such that b ≤ x
for all x ∈ S. Also, then b is called a rough lower bound or just a lower bound
for S. See Fig.1(ii).

(iii) S is said to be bounded if S is bounded above and also bounded below.
See Fig.1(iii).

Examples : 1) The set S = {1, 3, 4, 6} is bounded above and for example, 8
is a rough upper bound for S since all elements of S are less than 8. Similarly,
6, 8.52, 15

√
7 are also upper bounds for S. In fact, every number ≥ 6 is an

upper bound for S. Also, S is bounded below and every number le1 is a lower
bound for S. Hence by (iii) of the above definition the set S is a bounded set.

2) Consider the interval T = [3, 7.4). By definition, we know that T is the set
of all numbers x such that 3 ≤ x < 7.4. Hence T is bounded above and every
number ≥ 7.4 is an upper bound for T. Also T is bounded below and every
number ≤ 3 is a lower bound for T. Hence T is a bounded set.

3) Let S be a non-empty set of real numbers. Then

S is a bounded set

⇔ There are real numbers a, b such that a ≤ x ≤ b for all x ∈ S
⇔ S ⊆ [a, b] for some real numbers a, b.

4) The set R is not bounded above. To prove thissuppose that R is bounded
above and let a be an upper bound for R. Then every number in R must be
less than or equal to a. But this is not true. for example, a+ 1 is an element
of R and a + 1 > a. This contradiction proves that R is not bounded above.
Similarly, it can be shown that R is not bounded below.

Consider the above set S = {1, 3, 4, 6} again. Clearly, 6 is an upper bound
for S. But the number 6 has the following additional property: No number
smaller than 6 is an upper bound for S. To see this let a be any number < 6.
Then it is not true that every element of S is ≤ a. For example, 6 is in S and
6 > a. Hence a is not an upper bound for S. The above two properties of 6,
taken together, mean that 6 is the smallest among all the upper bounds for S.
We say that 6 is the least upper bound for S. Similarly, 1 is a lower bound for
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S and moreover, no number greater than 1 is a lower bound for S. Thus 1 is
the greatest lower bound for S.

Definition : Let S be a no-empty set of real numbers. A real number M is
called the least upper bound or the supremum for S, and we write M = supS,
if

(i) M is an upper bound for S and

(ii) no number less than M is an upper bound for S. See Fig.1(iii).

Note that property (ii) can be stated equivalently as follows:

(ii)′ For every number ε > 0, the number M − ε is not an upper bound

for S. That is,

(ii)′′ For every number ε > 0, there is at least one element x0 of S

such that x0 > M − ε. See Fig.1(iv).

Definition : Let S be a no-empty set of real numbers. A real number m is
called the greatest lower bound or the infimum for S, and we write m = inf S,
if

(i) m is a lower bound for S and

(ii) no number greater m is a lower bound for S. See Fig.1(iii).

Note that property (ii) can be stated equivalently as follows:

(ii)′ For every number ε > 0, the number m+ ε is not a lower bound

for S. That is,

(ii)′′ For every number ε > 0, there is at least one element y0 of S

such that y0 < m+ ε. See Fig.1(iv).

The numbers inf S and supS are also sometimes called the exact bounds of
S.

Examples : 5) For the set S = {1, 3, 4, 6}, we have supS = 6 and inf S = 1.

6) For T = [3.7.4), supT = 7.4 and inf T = 3.

To prove this observe that 7.4 is an upper bound for T as x < 7.4 for all
x ∈ T. Secondly, take any number a < 7.4. Then if a < 3, take x0 = 3, and
if 3 ≤ a < 7.4, take x0 = (a + 7.4)/2. In either case we see that x0 ∈ T and
x0 > a. Hence a is not an upper bound for T and so supT = 7.4.

Next, 3 is clearly a lower bound for T. Also if c is any number greater than
3, then y0 = 3 is an element of T such that y0 < c. So c is not a lower bound
for T. Hence inf T = 3.

7) Let S be a no-empty set of real numbers. Then the supremum of S is
unique, if it exists. Similarly, inf S is unique, if it exists.
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To prove this, suppose that S has two suprema, say M and M ′. If these
are unequal then either M < M ′ or M > M ′. First suppose M < M ′. Then
since M ′ is a supremum of S, M is not an upper bound of S. This contradicts
our assuption that M is a supremum of S. We get a similar contradition if
M > M ′. Hence M = M ′ and so S can have at most one supremum. Similarly,
it can be shown that inf S is unique, when it exists.

8) The supremum of a set S ⊆ R, if it exists, may or may not be an element
of S. A similar remark is true for the infimum of S.

Thus in Ex. 6 above, supT = 7.4 is not in T = [3, 7.4) while in Ex. 5,
supS = 6 actually is an element of S = {1, 3, 4, 6}. Similarly, it is easy to see
that inf T = 3 and 3 ∈ T while inf(4, 9] = 4 and 4 is not in the half-open
interval (4, 9].

But if supS exists and belongs to S, then supS is clearly the maximum
element of S.

Conversely, if maxS exists then supS exists and maxS = supS. Thus in
Ex. 5, supS = maxS = 6. But the set T in Ex. 6 has no maximum element
because supT exists but is not in T.

Similarly, inf S exists and belongs to S if and only if minS exists; and in
either case, inf S = minS. Thus inf[3, 7.4) = min[3, 7.4) = 3.

Finally, the open interval A = (4, 9) has no minimum element because
inf A exists and is 4 but 4 /∈ A.
9) Suppose S is a non-empty finite set of real numbers. Then by the property
6 of §1.4, S possesses the maximum element and the minimum element. Hence
in this case, supS and inf S both exist and are respectively equal to maxS
and minS.

This is not true for infinite sets of real numbers: for example, the infinite
set N has no maximum element.

Therefore the distinction between supS and maxS (and also between inf S
and minS) appears only when we consider infinite sets.

10) By Ex. 8 and 9, we see that T = [3, 7.4) is a bounded infinite set.

Note: Clearly, if inf S and supS both exist, then we have

inf S ≤ x ≤ supS, for all x ∈ S.

We now state the Completeness Property of real numbers.
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The Completeness Property: For every non-empty subset S of R, if S is
bounded above, then supS exists in R. (This is expressed by saying that the
ordered field R is complete.)

This property gaurantees the existence of the supremum of a non-empty
subset of R which is bounded above. From it a similar result for infimum can
be deduced; see property 2 below.

The ordered field Q of rational numbers is not complete in the above sense.
To prove this consider the set

A = {x ∈ Q | x2 < 2}.

Then A is non-empty because for example, 1 ∈ S. Next, 2 is an upper bound
for A because 2 ∈ Q and

x ≥ 2 ⇒ x2 ≥ 4 > 2 ⇒ x2 > 2 ⇒ x /∈ A,

so that x < 2 for all x in A.
Hence A is bounded above. But supA does not exist in Q. To see this

take any rational number a. Then by 5 of §1.3,a2 6= 2. Hence either a2 < 2 or
a2 > 2.

If a ≤ 0, then a < 1 and 1 ∈ A. Hence a is not an upper bound of A.
Let a > 0 and a2 < 2. Consider the number b = (2a + 2)/(a + 2). Then

b ∈ Q, b > 0 and

(i) b2 − 2 =
2(a2 − 2)

(a+ 2)2
(ii) b− a =

2− a2

a+ 2
.

By (i), b2 < 2. Hence b ∈ A. Also by (ii), b > a. Hence a is not an upper bound
of A.

Finally, let a > 0 and a2 > 2. Then a is an upper bound of A. (Why ?).
But taking b as before we see that b ∈ Q, b > 0 and by (i), b2 > 2. Hence b
is an upper bound of A. Also, by (ii), b < a. Hence b is an upper bound of A
and b is smaller than a. Hence a is not the smallest upper bound for A, i.e.
a 6= supA.

Thus we see that the subset A of Q is non-empty and is bounded above
but supA does not exist in Q.

The following properties of real numbers can be deduced from the com-
pleteness property.
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1) Existence of irrational numbers : Consider the set

B = {x ∈ R | x2 < 2.}.

Then, as seen for the set A above, we can show that B is a non-empty subset
of R and B is bounded above. Hence by completeness property, supB (= a,
say) exists in R. Clearly, a > 0. Also, as seen above,

a2 < 2 ⇒ a 6= supB and a2 > 2 ⇒ a 6= supB.

Hence a2 = 2. This number a is a real irrational number. It is clled the positive
square root of 2 and is denoted by

√
2.

Note : Suppose a, b ∈ R and a is irrational and b is rational. Then the
numbers a + b,−a, a − b and a−1 are irrational. If b 6= 0, then the numbers
ab, ab−1, ba−1 are irrational.

2) Let S be a non-empty set of real numbers. If S is bounded below, then
inf S exists in R.

To prove this, consider the set

S1 = {−x | x ∈ S}.

Then S1 is non-empty as S is non-empty. Also,

a is a lower bound for S ⇔ a ≤ x, for all x ∈ S
⇔ −a ≥ −x, for all x ∈ S
⇔ −a ≥ y, for all y ∈ S1
⇔ −a is an upper bound for S1.

Now suppose that S is bounded below. Then by the above, S1 is bounded
above and so, by completeness property , supS1(= M , say) exists in R. Then
again by the above, −M is a lower bound for S. Also, given ε > 0, there is
x0 ∈ S1 such that x0 > M − ε. Hence y0 = −x0 < −M + ε and y0 ∈ S. Hence
−M = inf S.

3) Archimedean property : If x, y ∈ R, then there is a natural number n
such that nx > y.

To prove this, note first that if x ≥ y then the result holds with n = 1.
Next, let 0 < x < y. Suppose that there is no natural number n such that
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nx > y. Then for all n ∈ N, we have nx < y. Hence the set S = {nx | n ∈ N} is
non-empty and bounded above. Hence by completeness property supS(= M,
say) exists. Then

For all n ∈ N nx ≤M
⇒ For all n ∈ N, (n+ 1)x ≤M
⇒ For all n ∈ N, nx ≤M − x.

Now M−x < M as x > 0. So M−x is an upper bound of S and M−x < supS.
This is a contradiction. Hence nx ≥ y for some n ∈ N.

4) For every y ∈ R, then there is a natural number n such that n > y.

With x = 1, the Archimedean property implies that there is a natural
number m such that m = mx > y. So n = m+ 1 is as required.

5) If x ∈ R and x > 0, then there is a natural number n such that 0 < 1/n > x.

Here if x > 1, take n = 1. If 0 < x ≤ 1, the Archimedean property implies
that there is a natural number m such that mx ≥ 1. Now let n = m+ 1. Then
nx > mx ≥ 1 and so nx > 1 as required.

6) Given x ∈ R, there is a unique integer m such that m ≤ x < m + 1. This
integer is called the integral part of x and is denoted as [x].

To prove uniqueness of [x], let m,n be two integers such that

m ≤ x < m+ 1 and n ≤ x < n+ 1.

Then m < n+ 1 and n < m+ 1. hence m ≤ n and n ≤ m; so m = n.

To prove the existence of [x], we consider various cases:

(i) Observe that [x] = 0 if 0 ≤ x < 1 and [x] = −1 if −1 ≤ x < 0.

(ii) If x ≥ 1, by 4) there is a natural number such that n > x. of all such
natural numbers n, let m + 1 be the least, which exists by the well-ordering
principle. Then m ≤ x. Thus m ≤ x < m+ 1 and so [x] = m.

(iii) If x < −1, then −x > 1 and so by 4) there is a natural number such
that n ≥ x. of all such natural numbers n, let p+ 1 be the least, which exists
by the well-ordering principle. Then p < −x ≤ p+ 1 so that −p− 1 ≤ x < p
and so [x] = −p− 1.

7) The set Q is dense in R. That is, between any two distinct real numbers
there is a rational number.
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Suppose a, b ∈ R and a < b. Then b−a > 0 and so by 5), there is a natural
number n such that 1/n < b− a. By 6), there is an integer m such that

m− 1 ≤ an+m

or an < m ≤ an+ 1

or a <
m

n
≤ a+

1

n
.

Thus m/n is a rational number between a and b.

8) The set all irrational numbers is dense in R. That is, between any two
distinct real numbers there is an irrational number.

Suppose a, b ∈ R and a < b. If a > 0 or b < 0, by 7), choose a rational
number r such that a

√
2 < r < b

√
2. If a < 0 < b, again by 7) choose a rational

number r such that 0 < r < b
√

2. Then as
√

2 > 0, we get on dividing by√
2, a < r/

√
2 < b and c = r/

√
2 is an irrational number as r is a non-zero

rational and
√

2 is irrational. Thus c is an irrational number between a and b.

Examples : 1) Consider the set

S = {1, 1

2
,
1

3
, . . . ,

1

n
, . . .}.

Here every element x of S is of the form x =
1

n
for some n ∈ N. Now 1 is

the maximum element of S because 1 ∈ S and 1/n ≤ 1 for all n ∈ N. Hence

supS = 1. Next, inf S = 0. For, first
1

n
> 0. Secondly, given any ε > 0, by 5),

there is a natural number m such that
1

m
< ε. Hence if x0 =

1

m
, then x0 ∈ S

and x0 < 0 + ε. So inf S = 0. Finally, S has no minimum element because
inf S = 0 /∈ S.
2) Let S, T be non-empty sets of real numbers and S ⊆ T. Then

(i) supS ≤ supT if T is bounded above.

(ii) inf T ≤ inf S if T is bounded below.

To prove (i), suppose that T is bounded above. Then there is a number k
such that x ≤ k for all x ∈ T. In particular, x ≤ k for all x ∈ S since S ⊆ T.
Hence S is also bounded above. So by the completeness property, supT and
supS both exist. Now x ∈ S ⇒ x ∈ T ⇒ x ≤ supT. Hence supT is an upper
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bound of S. Therefore supS ≤ supT since supS is the least upper bound of
S. This proves (i). The reader can similarly prove (ii).

EXERCISE 1

1. Solve the inequalities:

(i) 3− 5x < 2x− 11 (ii) −1 <
3x+ 4

x− 7
.

2. Let a > 0 and f(x) = ax2 + bx+ c. Prove that

(i) f(x) ≥ 0 for all x ∈ R, ⇔ b2 ≥ ac.
(ii) If f(x) = 0 has distinct real roots α, β and α < β, then for a given
number t,

f(t) > 0 ⇔ t < α or x > β,
f(t) < 0 ⇔ α < t < β.

3. Solve the inequalities:

(i) |3x+ 4| < |x+ 2| (ii)
2 + x

3− x
(iii) |2x2 − 11x+ 14| < 2.

4. Prove that a set of real numbrs is bounded if and only if there is a
constant a > 0 such that |x| ≤ a for all x ∈ S.

5. Find the supremum and infimum of the following sets:

(i) (a, b) (ii) (a,∞) (iii) (−∞, a) (iv) {(−1)n
1

n
: n ∈ N}

(v) {n− 1

n
: n ∈ N} (vi){(−1)n +

n+ 1

n+ 2
: n ∈ N}

6. If a, b ∈ R, show that

(i) max{a, b} =
1

2

[
a+ b+ |a− b|

]
,

(ii) min{a, b} =
1

2

[
a+ b− |a− b|

]
.

7. Find a rational number between
√

6 and
√

7.

ANSWERS
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1. (i) x > 2 (ii) x <
3

4
or x > 7.

2. (i) Use the identity f(x) = a
[(
x+

b

a

)2
+
ac− b2

a2

)]
.

(ii) Here f(x) = a(x− α)(x− β).

3. (i) By §1.5 12), the inequality is equivalent to

(3x+ 4)2 < (x+ 2)2

i.e. to (2x+ 3)(x+ 1) < 0 or − 3

2
< x < −1.

(ii) x <
1

2
(iii)

3

2
< x < 4.

4. Suppose that the number a exists as stated. Then for all x ∈ S, we have
−a ≤ x ≤ a. Hence S is bounded. Conversely, suppose S is bounded.
Then there exist constants c, d such that c ≤ x ≤ d for all x ∈ S. Let
a ≥ max{−c, d}. Then for all x ∈ S,

−a ≤ c ≤ x ≤ d ≤ a or |x| ≤ a.

5. (i) sup = b, inf = a (ii) sup does not exist, inf = a
(iii) sup = a, inf does not exist (iv) sup = 1

2 , inf = −1
(v) sup = 1, inf = 0 (vi) sup = 2, inf = −1

3

6. Since 600 < 625 < 700, we have

10
√

6 < 25 < 10
√

7

or
√

6 < 2.5 <
√

7.

So we may take r = 2.5.
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CHAPTER 2

Limits

Introduction :

Limit is the fundamental concept of Calculus. It describes the behaviour of
a function as its input value approaches a particular value. We will introduce
the concept of limit in this chapter and study its basic properties.

Suppose a man wants to compute the speed of a vehicle passing through a
point P. He can determine the instantaneous speed by computing the average
speed from point P to points which are close to P. If these average speeds
over small distances approach a certain value, then that value is known as
the instantaneous speed at P. This is exactly how the speed of a vehicle is
determined in real-world models.

Neighbourhood of a point: Let c ∈ R and δ > 0 be any positive real
number, then the neighbourhood of the point c of radius δ is denoted by
Nδ(c) and is defined as

Nδ(c) = {x ∈ R | |x− c| < δ} = {x ∈ R | −δ < x− c < δ}
= {x ∈ R | c− δ < x < c+ δ} = (c− δ, c+ δ)

= the open interval from c− δ to c+ δ.

Example : N0·2(3) = (3− 0 · 2, 3 + 0 · 2) = (2 · 8, 3 · 2).

Example : N5(2) = (2− 5, 2 + 5) = (−3, 7).

Deleted Neighbourhood of a point: Let c ∈ R and δ > 0 be any positive
real number, then the deleted neighbourhood of the point c of radius δ is
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denoted by N ′δ(c) and is defined as

N ′δ(c) = {x ∈ R | 0 < |x− c| < δ}
= {x ∈ R | −δ < x− c < δ} − {c}
= {x ∈ R | −δ < x− c < δ, x 6= c}
= {x ∈ R | c− δ < x < c+ δ, x 6= c}
= (c− δ, c+ δ)− {c} = (c− δ, c) ∪ (c, c+ δ).

Example : N ′3(1) = (1− 3, 1) ∪ (1, 1 + 3) = (−2, 1) ∪ (1, 4).

Example : Suppose a particle falls freely experiencing no air resistance, and
its velocity v(t) at time t is given by v(t) = 32t. Consider the following table
of values of v(t) :

t 1 · 9 1 · 99 1 · 999 2 · 0001 2 · 001 2 · 01

v(t) 60 · 8 63 · 68 63 · 968 64 · 0032 64 · 032 64 · 32

From the bottom row of the above table we see that the velocity v(t) seems to
be approaching the value 64 as the time t approaches 2. Observe that t can
approach 2 from the right side of 2 or from its left side; but v(t) approaches
64 in both cases.

We express the above observation mathematically as

lim
t→2

v(t) = 64,

and say that “the limit of v(t) as t approaches 2 is 64”.
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Formal Definition of Limit: Let f be a function defined in a deleted neigh-
bourhood of a point a ∈ R. We say that L ∈ R is the limit of the function f
at a and write lim

x→a
f(x) = L if

for any ε > 0, ∃ a δ > 0 such that
if 0 < |x− a| < δ then |f(x)− L |< ε

i.e. in terms of neighbourhoods,
if x ∈ N ′δ(a) then f(x) ∈ Nε(L).

Note: We sometimes use the following notation: ‘∃’ is read as ‘there exist’ or
‘there exists’. Also, ‘∀’ is read as ‘for every’ or ‘for all’.

Example: Let f(x) = b ,∀x ∈ R, be a constant function. Let a ∈ R. Show
that lim

x→a
f(x) = b.

Solution: Let ε > 0 be given, we have to find δ > 0, such that,
if 0 < |x− a| < δ then |f(x)− b| < ε.

Note that in this case, |f(x) − b| = |b − b| = 0 < ε ∀x ∈ R. Hence we can
take δ to be any positive number and then we can say that

0 < |x− a| < δ ⇒ |f(x)− b| < ε.
∴ lim
x→a

f(x) = b i.e. lim
x→a

b = b.

Example: Let f(x) = x, ∀x ∈ R, be the identity function. Let a ∈ R. Show
that lim

x→a
f(x) = a.

Solution: Let ε > 0 be given, we have to find δ > 0, such that,
if 0 < |x− a| < δ then |f(x)− a| < ε.

Note that in this case, |f(x)−a| = |x−a|. So we take δ = ε. Then 0 < |x−a| <
δ ⇒ |f(x)− a| < ε.
∴ lim
x→a

f(x) = a i.e. lim
x→a

x = a.

Example: Using the definition of limit, show that lim
x→a

x2 = a2 for any a ∈ R.

Solution: Let ε > 0 be given, we have to find δ > 0, such that
0 < |x− a| < δ ⇒ |x2 − a2| < ε.
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Note that

|x2 − a2| = |(x− a)(x+ a)|
= |x− a| |x+ a|
≤ |x− a|(|x|+ |a|) [ by triangle inequality]

< |x− a|(|a|+ 1 + |a|) ∀x ∈ N1(a)

= |x− a|(2|a|+ 1) ∀x ∈ N1(a)

< ε,

if |x− a| <
ε

2|a|+ 1
.

So we choose δ = min
{

ε
2|a|+1 , 1

}
. Then by the above,

0 < |x− a| < δ ⇒ |x2 − a2| < ε.
∴ lim
x→a

x2 = a2.

Example: Using the defintion of limit show that lim
x→0

2x2 + 3

x+ 5
=

3

5
.

Solution: Let ε > 0 be given, we have to find δ > 0, such that

0 < |x− 0| < δ ⇒
∣∣∣2x2+3
x+5 −

3
5

∣∣∣ < ε.

Note that ∣∣∣∣2x2 + 3

x+ 5
− 3

5

∣∣∣∣ =

∣∣∣∣10x2 + 15− 3x− 15

5(x+ 5)

∣∣∣∣ =

∣∣∣∣10x2 − 3x

5(x+ 5)

∣∣∣∣
=

∣∣∣∣x(10x− 3)

5(x+ 5)

∣∣∣∣ = |x| |10x− 3|
5|x+ 5|

≤ |x| |10x+ 50|
5|x+ 5|

∀x ∈ N1(0)

= |x|10|x+ 5|
5|x+ 5|

∀x ∈ N1(0)

= 2|x− 0| ∀x ∈ N1(0)

< ε,

if |x− 0| < ε/2. Hence choose δ = min
{
ε
2 , 1
}
. Then

0 < |x− 0| < δ ⇒
∣∣∣2x2+3
x+5 −

3
5

∣∣∣ < ε.

∴ lim
x→0

2x2 + 3

x+ 5
=

3

5
.
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Exercises:
Using the definition of limit show that

a) lim
x→2

x2 = 4 b) lim
x→3

(x2 − x) = 6 c) lim
x→9

√
x = 3

d) lim
x→−6

x+ 4

2− x
=
−1

4
e) lim

x→3

x

4x− 9
= 1 f) lim

x→0

√
x = 0.

Non-existence of limit: Sometimes it so happens that a given function f
does not have a limit at a given point a. That is, there exists no number L for
which the definition of limit is satisfied. But how can we prove this fact in a
given case?

For this purpose we first derive a necessary condition for the existence of
the limit of f(x) as x→ a.

Thus suppose that lim
x→a

f(x) = L for a certain number L. Then, by def-

inition, given any ε > 0, there exists δ > 0 such that for all x the deleted
neighbourhood (a− δ, a+ δ)− {a}, we have

|f(x)− L| < ε/2. (A)

Hence, if x1, x2 are any two points in (a− δ, a+ δ)− {a}, we have

|f(x1)− f(x2)| = |f(x1)− L+ L− f(x2)|
≤ |f(x1)− L|+ |f(x2)− L| < ε/2 + ε/2 = ε. (B)

In other words, condition (A) says that the number L is such that the values
of f are close to the same number L for all values of x sufficiently close to
a. This implies condition (B) namely, the values f(x1), f(x2) of f are close to
each other for all values x1, x2 of x sufficiently close to a.

Hence the condition (B) necessarily holds if the condition (A) holds for
some number L. Therefore, if condition (B) is not satisfied, then no number
L can exist for which condition (A) is satisfied.

Hence to prove the non-existence of the limit of f at a, it is enough to do
the following:

Find a particular number ε > 0, with the following property: Given any
δ > 0, two numbers x1 and x2 in ∈ N ′δ(a) can be found such that

|f(x1)− f(x2)| ≥ ε.

Example : Show that lim
x→0

sin

(
1

x

)
does not exist.
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Solution: To see this, take ε = 1, and given any δ > 0, choose a positive
integer n such that 1/(2nπ − (π/2)) < δ. Let

x1 = 1/(2nπ + (π/2)) and x2 = 1/(2nπ − (π/2)). Then clearly,

x1, x2 ∈ (−δ, δ)− {0} and

|f(x1)− f(x2)| = | sin(2nπ + (π/2))− sin(2nπ − (π/2))|
= |1− (−1)| = 2 > 1 = ε.

Hence the limit lim
x→0

sin(1/x) does not exist.

Actually, we see from the figure below that, as x gets close to 0 from the
right or from the left, f(x) does not approach any particular number. But f(x)
oscillates between 1 and −1 infinitely often. Hence we choose ε and x1, x2 as
in the above.

Right Hand Limit:
Suppose function f(x) is defined for all x such that a < x < a + δ1 for

some δ1 > 0. We say that right hand limit of f at point a ∈ R is L1 ∈ R if, for
any ε > 0, there exists δ > 0 such that
a < x < a+ δ ⇒ |f(x)− L1| < ε.

We write this fact as lim
x→a+

f(x) = L1 = lim
x→a
x>a

f(x).
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Left Hand Limit:

Suppose function f(x) is defined for all x such that a − δ2 < x < a for
some δ2 > 0. We say that left hand limit of f at point a ∈ R is L2 ∈ R if, for
any ε > 0, there exists δ > 0 such that
a− δ < x < a⇒ |f(x)− L2| < ε.

We write this fact as lim
x→a−

f(x) = L2 = lim
x→a
x<a

f(x).

Remark : Observe that lim
x→a

f(x) = L if and only if

lim
x→a+

f(x) = L = lim
x→a−

f(x).

Example : Let f(x) = |x|
x , x 6= 0. Find lim

x→0
f(x), if it exists.

Solution: Note that lim
x→0+

f(x) = lim
x→0
x>0

|x|
x

= lim
x→0
x>0

x

x
= lim

x→0
x>0

1 = 1,

and lim
x→0−

f(x) = lim
x→0
x<0

|x|
x

= lim
x→0
x<0

−x
x

= lim
x→0
x<0

(−1) = −1.

∴ lim
x→0+

f(x) 6= lim
x→0−

f(x). Hence lim
x→0

f(x) does not exist.

Properties of Limits:

Theorem : Let f be a function defined in some deleted neighbourhood of a
point a. If lim

x→a
f(x) exists then it is unique.

Proof: Let lim
x→a

f(x) = L1 and lim
x→a

f(x) = L2, where L1, L2 ∈ R. We have to

prove that L1 = L2. On the contrary, suppose L1 6= L2.

∴ L1 − L2 6= 0. ∴ |L1 − L2| > 0.

Since lim
x→a

f(x) = L1, we know that

for ε = |L1 − L2| > 0, ∃ δ1 > 0 such that
0 < |x− a| < δ1 ⇒ |f(x)− L1| < ε

2 . (1)

Since lim
x→a

f(x) = L2, we know that

for ε = |L1 − L2| > 0, ∃ δ2 > 0 such that
0 < |x− a| < δ2 ⇒ |f(x)− L2| < ε

2 . (2)
Let δ = min{δ1, δ2}.
∴ by (1) and (2) we get
0 < |x− a| < δ ⇒ |f(x)− L1| < ε

2 , |f(x)− L2| < ε
2 . (3)

Now ε = |L1 − L2| = |L1 − f(x) + f(x)− L2|
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≤ |L1 − f(x)|+ |f(x)− L2| [by triangle inequality]
= |f(x)− L1|+ |f(x)− L2| [since |a− b| = |b− a|]
< ε

2 + ε
2 = ε, if 0 < |x− a| < δ, by (3).

∴ ε < ε,

which is a contradiction. So L1 6= L2 is not possible. Thus L1 = L2.
∴ lim
x→a

f(x) is unique, if it exists.

Theorem: Let f and g be two functions such that lim
x→a

f(x) = K and

lim
x→a

g(x) = L. Then

a) lim
x→a

α f(x) = α lim
x→a

f(x) = αK where α is a constant.

b) lim
x→a

(f ± g)(x) = lim
x→a

f(x)± lim
x→a

g(x) = K ± L.

c) lim
x→a

(f · g)(x) = lim
x→a

f(x) · lim
x→a

g(x) = K · L.

d) lim
x→a

f

g
(x) =

lim
x→a

f(x)

lim
x→a

g(x)
=
K

L
, provided L 6= 0.

Proof: a) If α = 0 then αf(x) = 0, ∀x.
∴ lim
x→a

α f(x) = lim
x→a

0 = 0 = 0 · lim
x→a

f(x) = 0 K.

Suppose α 6= 0.
Let ε > 0, we have to find δ > 0, such that
0 < |x− a| < δ ⇒ |αf(x)− αK| < ε.

Note that |αf(x)− αK| = |α| |f(x)−K|. (1)

Since lim
x→a

f(x) = K, we know that for ε
|α| > 0, ∃ δ1 > 0 such that

0 < |x− a| < δ1 ⇒ |f(x)−K| < ε
|α| .

Let δ = δ1. Then by (1) we get

0 < |x− a| < δ ⇒ |αf(x)− αK| = |α||f(x)−K|

< |α| ε
|α|

= ε.

∴ 0 < |x− a| < δ ⇒ |αf(x)− αK| < ε.

∴ lim
x→a

α f(x) = αK = α lim
x→a

f(x).

b) Let ε > 0, we have to find δ > 0 such that
0 < |x− a| < δ ⇒ |(f + g)(x)− (K + L)| < ε.
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Consider

|(f + g)(x)− (K + L)| = |f(x) + g(x)−K − L|
= |f(x)−K + g(x)− L|
≤ |f(x)−K|+ |g(x)− L|, (1)

by triangle inequality.

Since lim
x→a

f(x) = K, we know that for ε
2 > 0, ∃ δ1 > 0 such that

0 < |x− a| < δ1 ⇒ |f(x)−K| < ε
2 . (2)

Since lim
x→a

g(x) = L, we know that for ε
2 > 0, ∃ δ2 > 0 such that

0 < |x− a| < δ2 ⇒ |g(x)− L| < ε
2 . (3)

Let δ = min{δ1, δ2}.
∴ by (2) and (3), (1) gives
0 < |x− a| < δ ⇒ |(f + g)(x)− (K + L)| < ε

2 + ε
2 = ε.

∴ lim
x→a

(f + g)(x) = K + L = lim
x→a

f(x) + lim
x→a

g(x).

Similarly,
lim
x→a

(f − g)(x) = K − L = lim
x→a

f(x)− lim
x→a

g(x).

c) First we prove that if lim
x→a

g(x) = L then the function g is bounded in some

deleted neighbourhood of the point a.
Since lim

x→a
g(x) = L, we know that

for ε = 1 > 0, ∃ δ > 0 such that
0 < |x− a| < δ ⇒ |g(x)− L| < ε = 1
i.e. −1 < g(x)− L < 1
i.e. L− 1 < g(x) < 1 + L
Let M = max{|L− 1|, |1 + L|}.
∴ |g(x)| < M, ∀x ∈ N ′δ(a).
∴ g(x) is bounded in the deleted neighbourhood N ′δ(a).

Now we prove c).
Let ε > 0, we have to find δ > 0 such that
0 < |x− a| < δ ⇒ |(fg)(x)−KL| < ε.
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Note that, using the triangle inequality, we have

|(fg)(x)−KL| = |f(x)g(x)− g(x)K + g(x)K −KL|
= |g(x)(f(x)−K) +K(g(x)− L)|
≤ |g(x)(f(x)−K)|+ |K(g(x)− L)|
= |g(x)| |f(x)−K|+ |K| |g(x)− L|
≤ |g(x)| |f(x)−K|+ (|K|+ 1)|g(x)− L|. (1)

Since lim
x→a

g(x) = L, we know that

g(x) is bounded in some deleted neighbourhood of the point a.
∴ ∃ δ1 > 0 and M ∈ R,M > 0 such that
|g(x)| < M, ∀x ∈ N ′δ1(a). (2)
Since lim

x→a
f(x) = K, we know that

for ε
2M > 0, ∃ δ2 > 0 such that

0 < |x− a| < δ2 ⇒ |f(x)−K| < ε
2M . (3)

Since lim
x→a

g(x) = L, we know that

for ε
2(|K|+1) > 0, ∃ δ3 > 0 such that

0 < |x− a| < δ3 ⇒ |g(x)− L| < ε
2(|K|+1) . (4)

Let δ = min{δ1, δ2, δ3}.
∴ by using (2), (3) and (4), (1) gives

0 < |x− a| < δ ⇒ |(fg)(x)−KL| < ε
2 + (|K|+1)ε

2(|K|+1) = ε
2 + ε

2 = ε.

∴ 0 < |x− a| < δ ⇒ |(fg)(x)−KL| < ε.
∴ lim
x→a

(fg)(x) = KL = lim
x→a

f(x) · lim
x→a

g(x).

A second proof of part c): Let ε > 0, we have to find δ > 0 such that
0 < |x− a| < δ ⇒ |(fg)(x)−KL| < ε.
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Note that

|(fg)(x)−KL| = |f(x)g(x)−KL|
= |f(x)g(x)−K g(x)− Lf(x) + LK

+ Lf(x)− LK +K g(x)− LK|
= |g(x)(f(x)−K)− L(f(x)−K) + L(f(x)−K)

+K(g(x)− L)|
= |(f(x)−K)(g(x)− L) + L(f(x)−K) +K(g(x)− L)|
≤ |f(x)−K| |g(x)− L|+ |L| |f(x)−K|+ |K| |g(x)− L|
≤ |f(x)−K| |g(x)− L|+ (|L|+ 1)|f(x)−K|

+ (|K|+ 1)|g(x)− L|. (1)

Since lim
x→a

f(x) = K, we know that

for
√
ε
3 > 0, ∃ δ1 > 0 such that

0 < |x− a| < δ1 ⇒ |f(x)−K| <
√
ε
3 . (2)

Since lim
x→a

g(x) = L, we know that

for
√
ε > 0, ∃ δ2 > 0 such that

0 < |x− a| < δ2 ⇒ |g(x)− L| <
√
ε. (3)

Since lim
x→a

f(x) = K, we know that

for ε
3(|L|+1) > 0, ∃ δ3 > 0 such that

0 < |x− a| < δ3 ⇒ |f(x)−K| < ε
3(|L|+1) . (4)

Since lim
x→a

g(x) = L, we know that

for ε
3(|K|+1) > 0, ∃ δ4 > 0 such that

0 < |x− a| < δ4 ⇒ |g(x)− L| < ε
3(|K|+1) . (5)

Let δ = min{δ1, δ2, δ3, δ4}.
Then using (2), (3), (4) and (5), (1) gives

0 < |x− a| < δ ⇒ |(fg)(x)−KL| <
√
ε

3

√
ε

+ (|L|+ 1)
ε

3(|L|+ 1)
+

(|K|+ 1)ε

3(|K|+ 1)
= ε.

∴ 0 < |x− a| < δ ⇒ |(fg)(x)−KL| < ε.

∴ lim
x→a

(fg)(x) = KL.
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d) First we prove that lim
x→a

1

g(x)
=

1

L
.

Let ε > 0, we have to find δ > 0 such that

0 < |x− a| < δ ⇒
∣∣∣ 1
g(x) −

1
L

∣∣∣ < ε.

Note that∣∣∣ 1
g(x) −

1
L

∣∣∣ =
∣∣∣L−g(x)g(x)L

∣∣∣ = |L−g(x)|
|g(x)| |L| = |g(x)−L|

|g(x)| |L| . (1)

Since lim
x→a

g(x) = L, we know that

for ε = |L|
2 > 0, ∃ δ1 > 0 such that

0 < |x− a| < δ1 ⇒ ||g(x)| − |L|| ≤ |g(x)− L| < |L|
2 .

∴ 0 < |x− a| < δ1 ⇒ −|L|
2 < |g(x)| − |L| < |L|

2

i.e. |L| − |L|2 < |g(x)| < |L|+ |L|
2

i.e. |L|2 < |g(x)| < 3
2 |L|.

∴ 2
|L| >

1
|g(x)| >

2
3|L| .

∴ 1
|g(x)| <

2
|L| . (2)

Since lim
x→a

g(x) = L, we know that

for |L|2ε
2 > 0, ∃ δ2 > 0 such that

0 < |x− a| < δ2 ⇒ |g(x)− L| < |L|2
2 ε. (3)

Let δ = min{δ1, δ2}.
∴ using (2) and (3), (1) gives

0 < |x− a| < δ ⇒
∣∣∣ 1
g(x) −

1
L

∣∣∣ < 2
|L| |L|

|L|2ε
2 = ε.

∴ lim
x→a

1

g(x)
=

1

L
.

∴ by part c),

lim
x→a

f(x)

g(x)
= lim

x→a

(
f(x)× 1

g(x)

)
= lim

x→a
f(x) · lim

x→a

1

g(x)
= K

1

L
=
K

L
.

Example: If lim
x→a

f(x) = K, then lim
x→a
|f(x)| = |K|.

Solution: Since lim
x→a

f(x) = K, we know that given ε > 0, ∃ δ > 0 such that

0 < |x− a| < δ ⇒ |f(x)−K| < ε. (1)

Now we have the inequality ||f(x)| − |K|| ≤ |f(x)−K|. Hence by (1),
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0 < |x− a| < δ ⇒ ||f(x)| − |K|| ≤ |f(x)−K| < ε.
So, lim

x→a
|f(x)| = |K|.

Example: Evaluate lim
x→2

(2x2 + 3x− 6).

Solution: Using the above properties of limits, we get

lim
x→2

(2x2 + 3x− 6) = 2 lim
x→2

x2 + 3 lim
x→2

x− lim
x→2

6

= 2× 22 + 3× 2− 6 = 8.

Example: Evaluate the following limits:
a) lim

x→2
(2x3 − 3x+ 4).

Solution: Consider lim
x→2

(2x3 − 3x+ 4) = 2 lim
x→2

(x3)− 3 lim
x→2

(x) + lim
x→2

(4)

= 2(23)− 3(2) + (4) = 16− 6 + 4 = 14.

b) lim
x→1

x3 + 4x− 3

x2 − 12
.

Solution: Consider lim
x→1

x3 + 4x− 3

x2 − 12

=
lim
x→1

(x3 + 4x− 3)

lim
x→1

(x2 − 12)
[ since lim

x→1
(x2 − 12) = −11 6= 0 ]

=
13 + 4(1)− 3

12 − 12
=

2

−11
=
−2

11
.

c) lim
x→1

x3 − 1

x2 − 1
.

Solution: Consider lim
x→1

x3 − 1

x2 − 1
= lim

x→1

(x− 1)(x2 + x+ 1)

(x− 1)(x+ 1)

= lim
x→1

(x2 + x+ 1)

(x+ 1)

=
(12 + 1 + 1)

(1 + 1)
=

3

2
.

Note: In above example we cannot substitute x = 1 in numerator and
denominator at the first step, since we are considering the values of x near
1 but different from 1. Also, for this reason, we can cancel out the common
factor (x− 1).

Example: Use lim
t→0

sin t

t
= 1 and find lim

x→0

sin ax

sin bx
, a 6= 0, b 6= 0.
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Solution: We have

lim
x→0

sin ax

sin bx
= lim

x→0

(
sin ax

ax
× bx

sin bx
× a

b

)
= lim

x→0

sin ax

ax
× 1

limx→0
sin bx
bx

× lim
x→0

a

b
= 1× 1

1
× a

b
=
a

b
.

Example: Evaluate lim
x→4

4−
√
x+ 12

x− 4
.

Solution: We have

lim
x→4

4−
√
x+ 12

x− 4
= lim

x→4

4−
√
x+ 12

x− 4
× 4 +

√
x+ 12

4 +
√
x+ 12

= lim
x→4

16− (x+ 12)

(x− 4)(4 +
√
x+ 12)

= lim
x→4

4− x
(x− 4)(4 +

√
x+ 12)

= lim
x→4

−1

4 +
√
x+ 12

=
−1

4 +
√

4 + 12
=
−1

8
.

Theorem: The “Sandwich” Theorem. Suppose g(x) ≤ f(x) ≤ h(x) for all x
in some deleted neighbourhood of a point a.

If lim
x→a

g(x) = lim
x→a

h(x) = L then lim
x→a

f(x) = L.

Proof: Let ε > 0, we have to find δ > 0 such that
0 < |x− a| < δ ⇒ |f(x)− L| < ε. (1)

Since lim
x→a

g(x) = L, we know that

for ε > 0, ∃ δ1 > 0 such that
0 < |x− a| < δ1 ⇒ |g(x)− L| < ε
i.e. L− ε < g(x) < L+ ε. (2)

Since lim
x→a

h(x) = L, we know that

for ε > 0, ∃ δ2 > 0 such that
0 < |x− a| < δ2 ⇒ |h(x)− 2| < ε
i.e. L− ε < h(x) < L+ ε. (3)

Since g(x) ≤ f(x) ≤ h(x) for all x in some deleted neighbourhood of a,
∃ δ3 > 0 such that
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0 < |x− a| < δ3 ⇒ g(x) ≤ f(x) ≤ h(x). (4)
Let δ = min{δ1, δ2, δ3}.
By (2), (3) and (4) we get
0 < |x− a| < δ ⇒ L− ε < g(x) ≤ f(x) ≤ h(x) < L+ ε
i.e. L− ε < f(x) < L+ ε
i.e. |f(x)− L| < ε.
∴ lim
x→a

f(x) = L.

Example: By using sandwich theorem show that lim
x→a

√
x =
√
a for any a > 0.

Solution: For any x > 0, we have

|
√
x−
√
a| =

∣∣∣∣(√x−√a)(
√
x+
√
a)√

x+
√
a

∣∣∣∣ =
|x− a|√
x+
√
a

<
|x− a|√

a
[as
√
x > 0].

∴ −|x− a|√
a

≤
√
x−
√
a ≤ |x− a|√

a
.

Therefore since lim
x→a

−|x− a|√
a

= lim
x→a

|x− a|√
a

= 0, by sandwich theorem we get

lim
x→a

(
√
x−
√
a) = 0.

∴ lim
x→a

√
x− lim

x→a

√
a = 0.

∴ lim
x→a

√
x =
√
a.

Example : Evaluate lim
x→0

x2 cos(1/x).

Solution: We know that for all x 6= 0, −1 ≤ cos(1/x) ≤ 1.
∴ −x2 ≤ x2 cos(1/x) ≤ x2, as x2 > 0.

Since lim
x→0

(−x2) = lim
x→0

x2 = 0, by sandwich theorem we get

lim
x→0

x2 cos(1/x) = 0.

Some Extensions of the Limit Concept:
Infinite Limit: Let f be defined in some deleted neighbourhood of a point
a, then lim

x→a
f(x) =∞ if for any K ∈ R, ∃ δ > 0 such that

0 < |x− a| < δ ⇒ f(x) > K.
Also, lim

x→a
f(x) = −∞ if for any K ∈ R, ∃ δ > 0 such that

0 < |x− a| < δ ⇒ f(x) < K.
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Limit at Infinity: Let A ⊆ R, f : A → R. Suppose (a,∞) ⊆ A for some
a ∈ R.

We say that lim
x→∞

f(x) = L if for every ε > 0,∃ K ∈ R such that

x > K ⇒ |f(x)− L| < ε.

Suppose (−∞, b) ⊆ A for some b ∈ R. We say that lim
x→−∞

f(x) = L if for every

ε > 0, ∃ K ∈ R, such that,
x < K ⇒ |f(x)− L| < ε.

Note: We have introduced the symbols ∞ and −∞ in the above definitions.
They are not real numbers.

Note: We will make use of the following results:

1. lim
x→∞

1

x
= 0.

Proof: In fact, given any ε > 0, choose K > 1/ε. Then
x > K ⇒ x > 1/ε ⇒ ε > 1/x ⇒ 0 < 1/x < ε.

2. lim
x→−∞

1

x
= 0.

Proof: In fact, given any ε > 0, choose K < −1/ε. Then x is negative and so
x < K ⇒ x < −1/ε ⇒ ε > −1/x ⇒ −ε < 1/x < 0.

3. lim
x→∞

ex =∞.

Proof: Note that e = 2.7182... > 1. Hence ex increases as x increases. So, let
e = 1 + t where t > 1. Given any K > 0, choose a positive integer n such that
n > K/t. Then

x > n⇒ ex > (1 + t)n = 1 + tn+ · · ·+ tn > tn > K ⇒ ex > K.

Hence ex →∞ as x→∞.

4. lim
x→−∞

ex = 0.

Proof: Let any ε > 0 be given. In the last result, taking K = 1/ε, we can
choose a positive integer n such that

−x > n⇒ e−x > 1/ε⇒ 0 < ex < ε.

Hence ex → 0 as x→ −∞.
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5. lim
x→0+

ex = lim
x→0
x>0

ex = 1. 6. lim
x→0−

ex = lim
x→0
x<0

ex = 1

7. lim
x→0+

e
1
x = lim

x→0
x>0

e
1
x = e∞ =∞

8. lim
x→0−

e
1
x = lim

x→0
x<0

e
1
x =

1

e∞
=

1

∞
= 0.

Example: Evaluate lim
x→∞

5x2 + 3x+ 20

3x2 − 2x
.

Solution: We have

lim
x→∞

5x2 + 3x+ 20

3x2 − 2x
= lim

x→∞

(5 + 3
x + 20

x2
)

(3− 2
x)

=
5 + 0 + 0

3− 0
=

5

3
.

Example : If lim
x→a

f(x) > 0 then show that there exists a δ > 0 such that

0 < |x− a| < δ ⇒ f(x) > 0.

Solution: Let lim
x→a

f(x) = L > 0.

∴ for ε = L
2 > 0, ∃ δ > 0 such that

0 < |x− a| < δ ⇒ |f(x)− L| < ε
i.e. |f(x)− L| < L

2
i.e. −L

2 < f(x)− L < L
2

i.e. L− L
2 < f(x) < L+ L

2
i.e. L

2 < f(x) < 3L
2 .

∴ f(x) > L
2 > 0.

∴ 0 < |x− a| < δ ⇒ f(x) > 0.

Exercises:

1. Evaluate following limits, if they exist.

(a) lim
x→1+

1

x− 1
(b) lim

x→∞

x+ 2√
x

(x > 0)

(c) lim
x→∞

√
x− 5√
x+ 3

(x > 0) (d) lim
x→∞

√
x− x√
x+ x

(x > 0)

2. If lim
x→a

f(x) < 0 then show that there exists a δ > 0 such that

0 < |x− a| < δ ⇒ f(x) < 0.
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Continuity

The idea of continuity may be thought of informally as the quality of having
parts that are in immediate connection with one another. The idea evolved
from the intuitive notion of a curve without breaks or jumps.

Defintion: Let f be a function defined in some neighbourhood of a point a.
We say that the function f is continuous at the point a if

lim
x→a

f(x) = f(a).

That is, f is continuous at a if for every ε > 0, ∃ δ > 0 such that

|x− a| < δ ⇒ |f(x)− f(a)| < ε.

That is, f is continuous at a if following conditions holds:

(i) f(a) exists, i.e. f is defined at the point a and

(ii) lim
x→a

f(x) exists and

(iii) lim
x→a

f(x) = f(a).

If any one of the above conditions is not satisfied then f is not continuous (or
is discontinuous) at the point a.

If conditions (i) and (ii) are satisfied but (iii) is not satisfied then we say
that f has a removable discontinuity at the point a. This discontinuity can be
removed by defining f(a) to be the value of the limit of f at a.

If condition (ii) is not satisfied then we say that f has a non-removable
discontinuity or an essential discontinuity at the point a.

Example: Let f(x) = (x2 − 1)/(x− 1), x 6= 1. This function is not defined
at 1, and is therefore discontinuous at 1. But the limit of f at 1 exists and in
fact, lim

x→1
f(x) = lim

x→1
(x+ 1) = 2. So, if we define f(1) to be 2, then f becomes

continuous at 1. So f has a removable discontinuity at 1.

Example: f : R→ R,
f(x) = 1

x , x 6= 0
= 0, x = 0.

Here f(0) = 0, but lim
x→0

f(x) = lim
x→0

1

x
does not exist. Hence f has a

non-removable discontinuity at x = 0.
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If a ∈ R, a 6= 0 then lim
x→a

f(x) = lim
x→a

1

x
=

1

a
= f(a). So f is continuous at

x = a. Thus f is continuous everywhere except at 0.

Example: Let f : R→ R,
f(x) = |x|

x , x 6= 0
= 0, x = 0.

Here f(0) = 0. Now lim
x→0+

f(x) = lim
x→0
x>0

|x|
x

= lim
x→0

x

x
= lim

x→0
1 = 1,

and lim
x→0−

f(x) = lim
x→0
x<0

|x|
x

= lim
x→0
x<0

−x
x

= lim
x→0

(−1) = −1.

∴ lim
x→0+

f(x) 6= lim
x→0−

f(x).

∴ lim
x→0

f(x) does not exist.

∴ f is discontinuous at x = 0.
‘0’ is a point of essential discontinuity of f.
Note that f can also be defined as

f(x) =


1 , x > 0
0 , x = 0
−1 , x < 0

Example: Let f : R→ R,
f(x) = sinx

x , x 6= 0
= 0, x = 0.

Here f(0) = 0.

Also, we know that lim
x→0

sinx

x
= 1. So lim

x→0
f(x) = 1 6= 0 = f(0).

∴ f is discontinuous at x = 0.
It is a removable discontinuity. We can remove this discontinuity by redefining
f(0) to be 1.

Example: Let f : R→ R,
f(x) = sin

(
1
x

)
, x 6= 0

= 0, x = 0.

We know lim
x→0

f(x) = lim
x→0

sin

(
1

x

)
does not exist.

∴ f has an essential discontinuity at x = 0.

Example: Let f : R→ R,
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f(x) = x sin 1
x , x 6= 0

= 0, x = 0.

Note that 0 ≤ |x sin 1
x | = |x| · | sin

1
x | ≤ |x| because | sin 1

x | ≤ 1. Therefore, since

lim
x→0

(0) = lim
x→0
|x| = 0, by sandwich theorem it follows that lim

x→0
x sin

1

x
= 0.

Since f(0) = 0, we see that f is continuous at x = 0.

Example : Discuss continuity of f at x = 0, where

f(x) = e
1
x−1
e
1
x+1

, x 6= 0

= 0, x = 0.

Solution: Here f(0) = 0. Note that

lim
x→0+

f(x) = lim
x→0
x>0

e
1
x − 1

e
1
x + 1

= lim
x→0
x>0

e
1
x

(
1− 1

e
1
x

)
e

1
x

(
1 + 1

e
1
x

) = lim
x→0
x>0

1− 1

e
1
x

1 + 1

e
1
x

=
1− 0

1 + 0
= 1.

Next, lim
x→0−

f(x) = lim
x→0
x<0

e
1
x − 1

e
1
x + 1

=
0− 1

0 + 1
= −1.

Thus lim
x→0+

f(x) 6= lim
x→0−

f(x). Hence lim
x→0

f(x) does not exist. So, f is

discontinuous at x = 0.

Example : f(x) = xe
1
x

1+e
1
x
, x 6= 0, f(0) = 0.

Discuss continuity of f at x = 0.

Solution: Here f(0) = 0. Note that

lim
x→0+

f(x) = lim
x→0
x>0

x e
1
x

1 + e
1
x

= lim
x→0
x>0

e
1
xx

e
1
x

(
1 + 1

e
1
x

) = lim
x→0
x>0

x
1

e
1
x

+ 1
=

0

0 + 1
= 0,

and lim
x→0−

f(x) = lim
x→0
x<0

x e
1
x

1 + e
1
x

=
0× 0

1 + 0
= 0.
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∴ lim
x→0

f(x) = 0 = f(0).

∴ the function f is continuous at x = 0.

Example : Discuss continuity of f at the points 1, 2 and 4 where

f(x) =


2x− 1 , x ≤ 1
x2 , 1 < x < 2

3x− 4 , 2 ≤ x < 4

x3/2 , x ≥ 4

Solution: (i) Here f(1) = 2(1)− 1 = 2− 1 = 1. Now
lim
x→1+

f(x) = lim
x→1
x>1

f(x) = lim
x→1
x>1

x2 = (1)2 = 1

and
lim
x→1−

f(x) = lim
x→1
x<1

f(x) = lim
x→1
x<1

(2x− 1) = 2(1)− 1 = 2− 1 = 1.

∴ lim
x→1

f(x) = 1 = f(1).

∴ the function f is continuous at x = 1.
(ii) Here f(2) = 3(2)− 4 = 6− 4 = 2.
Also, lim

x→2+
f(x) = lim

x→2
x>2

f(x) = lim
x→2
x>2

(3x− 4) = 3(2)− 4 = 6− 4 = 2

and lim
x→2−

f(x) = lim
x→2
x<2

f(x) = lim
x→2
x<2

x2 = 22 = 4.

∴ lim
x→2

f(x) does not exist.

∴ f is not continuous at x = 2.

(iii) Here f(4) = 4
3
2 =

(
4

1
2

)3
= 23 = 8.

Note that lim
x→4+

f(x) = lim
x→4
x>4

f(x) = lim
x→4
x>4

x
3
2 = 4

3
2 = 8

and lim
x→4−

f(x) = lim
x→4
x<4

f(x) = lim
x→4
x<4

(3x− 4) = 3(4)− 4 = 12− 4 = 8.

∴ lim
x→4

f(x) = 8 = f(4).

∴ the function f is continuous at x = 4.

Example: Find numbers α and β if the function f is continuous at every
point of (−3, 5), where



37

f(x) =


x+ α , −3 < x < 1
3x+ 2 , 1 ≤ x < 3
β + x , 3 ≤ x < 5

Solution: Here f(1) = 3(1) + 2 = 3 + 2 = 5.
Now lim

x→1−
f(x) = lim

x→1
x<1

f(x) = lim
x→1
x<1

(x+ α) = 1 + α.

Since f is continuous at x = 1, we have
lim
x→1−

f(x) = lim
x→1+

f(x) = lim
x→1

f(x) = f(1).

∴ 1 + α = 5. ∴ α = 5− 1 = 4.
Also, f(3) = β + 3, and
lim
x→3−

f(x) = lim
x→3
x<3

f(x) = lim
x→3
x<3

(3x+ 2) = 3(3) + 2 = 9 + 2 = 11.

Since f is continuous at x = 3, we have
lim
x→3−

f(x) = lim
x→3+

f(x) = lim
x→3

f(x) = f(3).

∴ β + 3 = 11. ∴ β = 11− 3 = 8.
∴ α = 4, β = 8.

Example: Let f : R→ R, and K > 0 be such that
|f(x)− f(y)| ≤ K|x− y| ∀x, y ∈ R.
Show that f is continuous at every point c ∈ R.
Solution: Let c ∈ R. By data,
|f(x)− f(y)| ≤ K|x− y|, ∀x, y ∈ R. (1)
Let ε > 0, we have to find δ > 0 such that
|x− c| < δ ⇒ |f(x)− f(c)| < ε.

Let δ = ε
K . Then by (1),

|x− c| < δ ⇒ |f(x)− f(c)| ≤ K|x− c| < Kδ = ε.
∴ lim
x→c

f(x) = f(x).

∴ f is continuous at c ∈ R. So, f is continuous on R.
Exercises:

1. Discuss continuity of the function f at x = 0 :

(i) f(x) = e
1
x2

1+x x 6= −1

(ii) f(x) = 1
x sin 1

x , x 6= 0, f(0) = 0

(iii) f(x) = x−|x|
x , x 6= 0, f(0) = 0.

2. Discuss continuity of f at x = 1
2 , where
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f(x) =


x , 0 ≤ x < 1

2
1 , x = 1

2
1− x , 1

2 < x < 1.

3. Find numbers α and β if the function f is continuous at every point in
(−2, 2), where

f(x) =


x+ α , −2 < x < 0
2x+ 1 , 0 ≤ x < 1
β − x , 1 ≤ x < 2.

4. Discuss continuity of the function f at x = 4, where

f(x) =


x2

4 − 4 , 0 < x < 4
0 , x = 4

4− 64
x2

, x > 4.

Theorem: If f and g are continuous functions at point c then
(i) αf is continuous at c, for any number α.
(ii) f ± g is continuous at c.
(iii) f · g is continuous at c.
(iv) f/g is continuous at c, if g(c) 6= 0.

Proof: (ii) Since f and g are continuous at point c, we have
lim
x→c

f(x) = f(c), lim
x→c

g(x) = g(c). Hence

lim
x→c

(f + g)(x) = lim
x→c

f(x) + lim
x→c

g(x) = f(c) + g(c) = (f + g)(c).

∴ f + g is continuous at point c. Similar proofs for (i), (iii) and (iv) hold.

Theorem: If f is continuous at x = c and g is continuous at f(c) then the
composite function gof is continuous at c.

Proof: Since g is continuous at f(c), given ε > 0, ∃ δ1 > 0 such that
|f(x)− f(c)| < δ1 ⇒ |(gof)(x)− (gof)(c)| < ε (1)

Since f is continuous at c,
for δ1 > 0, ∃ δ > 0 such that
|x− c| < δ ⇒ |f(x)− f(c)| < δ1. (2)

By (1) and (2) we get
|x− c| < δ ⇒ |(gof)(x)− (gof)(c)| < ε.
∴ gof is continuous at c.

Example: If a function f is continuous at point c then function |f | is also
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continuous at point c.

Solution: Let ε > 0, we have to find δ > 0 such that
|x− c| < δ ⇒ ||f |(x)− |f |(c)| < ε.
Since f is continuous at c, we know that
given ε > 0, ∃ δ1 > 0 such that
|x− c| < δ1 ⇒ |f(x)− f(c)| < ε.
Let δ = δ1.
Then, since ||f(x)| − |f(c)|| ≤ |f(x)− f(c)|, it follows that
|x− c| < δ ⇒ ||f(x)| − |f(x)|| < ε.
∴ |f | is continuous at point c.

Example: Determine the points of continuity of the function h : R−{0} → R,

defined by h(x) = 1+| sinx|
x .

Solution: Let f1(x) = 1, for all x ∈ R, f2(x) = sinx, for all x ∈ R, f3(x) =
|x|, for all x ∈ R, f4(x) = x, for all x ∈ R. We know all these functions are

continuous on R. We can write function h as h = f1+(f3of2)
f4

. Since addition of
continuous functions, division of continuous functions (non-zero denominator)
and composition of continuous functions yield a continuous function, we see
that h is continuous function on R− {0}.
Example: If f is continuous at a point c and f(x) ≥ 0 in some neighbourhood
of c then

√
f(x) is also continuous at c.

Solution: Let ε > 0, we have to find δ > 0 such that
|x− c| < δ ⇒ |

√
f(x)−

√
f(c)| < ε.

Suppose f(c) > 0. Then

|
√
f(x)−

√
f(c)| =

∣∣∣∣∣(√f(x)−
√
f(c))×

(
√
f(x) +

√
f(c))√

f(x) +
√
f(c)

∣∣∣∣∣
=

|f(x)− f(c)|√
f(x) +

√
f(c)

≤ |f(x)− f(c)|√
f(c)

. (1)

Since lim
x→c

f(x) = f(c) (as f is continuous at x = c), we know that

for
√
f(c)ε > 0, ∃ δ1 > 0 such that

|x− c| < δ1 ⇒ |f(x)− f(c)| < ε ·
√
f(c). (2)

Let δ = δ1.
∴ by (1) and (2) we get
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|x− c| < δ ⇒ |
√
f(x)−

√
f(c)| < ε

√
f(c)√
f(c)

= ε

i.e. |
√
f(x)−

√
f(c)| < ε.

∴
√
f(x) is continuous at c.

Suppose f(c) = 0.
Let ε > 0, we have to find δ > 0 such that
|x− c| < δ ⇒ |

√
f(x)− 0| < ε

i.e.
√
f(x) < ε.

Since f is continuous at c, we know that
for ε2 > 0, ∃ δ1 > 0 such that
|x− c| < δ1 ⇒ |f(x)− 0| < ε2.
i.e. f(x) < ε2

∴
√
f(x) < ε.

Let δ = δ1.
∴ |x− c| < δ ⇒

√
f(x) < ε.

∴
√
f(x) is continuous at c.

Example: Let f : R → R, f(x) = xn, n ∈ N, then f is continuous at any
a ∈ R.
Example: Polynomial function p(x) = anx

n + an−1x
n−1 + · · ·+ a1x+ a0,

ai ∈ R, n non-negative integer, is continuous at any a ∈ R.
Example: Rational function r(x) = p(x)

q(x) where p(x) and q(x) are polynomial
functions, is continuous at all points where it is defined i.e. at all points x
such that q(x) 6= 0.

Example: f(x) = sinx
cosx = tanx is continuous everywhere in R except on the

set {±π
2 ,±

3π
2 , · · · } i.e. on the set of zeros of cosx.

Example: Discuss continuity of
√

(x− 2)(x− 4).

Solution: (x − 2)(x − 4) is a polynomial function and hence is continuous
everywhere on R.
∴
√

(x− 2)(x− 4) is continuous ∀x ∈ R such that (x− 2)(x− 4) ≥ 0
i.e. x− 2 ≥ 0 and x− 4 ≥ 0 or x− 2 ≤ 0 and x− 4 ≤ 0
i.e. x ≥ 2 and x ≥ 4 or x ≤ 2 and x ≤ 4
i.e. x ≥ 4 or x ≤ 2.
∴
√

(x− 2)(x− 4) is continuous ∀x ∈ (−∞, 2] ∪ [4,∞).

Example: Let u(x) = x and
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f(x) =

{
0 , x 6= 0
1 , x = 0.

Show that lim
x→0

f(u(x)) 6= f( lim
x→0

u(x)).

Solution: Observe that f(u(x)) = f(x).
∴ lim
x→0

f(u(x)) = lim
x→0

f(x) = 0 [since lim
x→0+

f(x) = 0 = lim
x→0−

f(x).]

Now lim
x→0

u(x) = lim
x→0

x = 0.

∴ f
(

lim
x→0

u(x)
)

= f(0) = 1.

∴ lim
x→0

f(u(x)) 6= f
(

lim
x→0

u(x)
)
.

Example: Let f(x) = x
|x| , x 6= 0, f(0) = 0 then f is continuous everywhere in

R except x = 0.

Example: Let

f(x) =

{
1 , x ∈ [−1, 1]
0 , x ∈ (−∞,−1) ∪ (1,∞)

then f is continuous everywhere in R except two points x = −1 and x = 1.

Example: Let

f(x) =


1 , x ∈ (−1, 1) ∪ (2, 3) = A

4− x , x ∈ (3, 4) = B
0 , x ∈ (A ∪B)c = R− (A ∪B),

then f is continuous everywhere in R except three points x = −1, 1, 2.

Example: Let

f(x) =


n− 1 , n− 1 < x < n
n , x = n
n , n < x < n+ 1, n ∈ Z

then f is continuous at every point in Zc. That is, f is continuous everywhere
except integer points.

Exercises:

1. Discuss the continuity of the following functions:
i) f(x) = x2+2x+1

x2+1
(x ∈ R)

ii) f(x) =
√
x+
√
x (x ∈ R, x ≥ 0)

iii) f(x) = cos(
√

1 + x2), (x ∈ R)
iv) f(x) = x− [x], (x ∈ R)

where [x] denotes the greatest integer function.
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2. Find two functions f and g such that f is discontinuous at x = 1 but
f · g is continuous at x = 1.

3. Give examples of functions f and g both of which are discontinuous at
point a ∈ R but for which f + g is continuous at a.

4. Give an example of a function f : [0, 1] → R that is discontinuous at
every point of [0, 1] but for which |f | is continuous on [0, 1].

Example: Discuss continuity of the function f on R where,
f(x) = 1 if x is rational and,

= −1 if x is irrational.
Solution: Let c ∈ R. We show that function f is discontinuous at the point
c, by showing that lim

x→c
f(x) does not exist.

Let ε = 1 > 0 and δ > 0 be any real number. By density theorem,
there is a rational number x1 and an irrational number x2 in N ′δ(c). Hence,
|f(x1)− f(x2)| = |1− (−1)| = 2 > 1.

Hence lim
x→c

f(x) does not exist. Therefore function f is not continuous at

point c. Since c be arbitrary real number, f is discontinuous on R.

Example: Let f : R → R be a continuous function such that f(x) = 0 for
every rational number x. Show that f(x) = 0 for any real number x.
Solution: Let c be any real number. If c is rational number we are through.
Suppose c is an irrational number. We will prove that f(c) = 0. On the

contrary suppose f(c) 6= 0. Therefore |f(c)| > 0. Let ε = |f(c)|
2 . Since f is

continuous at point c, there is δ > 0 such that |f(x) − f(c)| < |f(c)|
2 for all

x ∈ Nδ(c).
By density theorem there is a rational number x1 ∈ Nδ(c). Hence, |f(x1) −
f(c)| < |f(c)|

2 , that is |0− f(c)| < |f(c)|
2 .

By canceling |f(c)| from both sides we get, 1 < 1
2 , which is contradiction.

Hence our assumption f(c) 6= 0 is wrong. Therefore f(c) = 0.

Example: Let f, g : R → R be continuous functions such that f(x) = g(x)
for every rational number x. Show that f(x) = g(x) for any real number x.
Solution: Since f(x) = g(x) for every rational number x, therefore f(x) −
g(x) = 0 for every rational number x.
Therefore (f−g)(x) = 0 for every rational number x. Since f, g are continuous
functions on R, therefore f−g is continuous on R. Hence by previous example
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(f − g)(x) = 0 for any real number x. Therefore f(x) = g(x) for any real
number x.

Note: 1) Let f, g : R→ R be continuous functions such that f(x) = g(x) for
every irrational number x. Show that f(x) = g(x) for any real number x.

2)Let f, g : R → R are functions such that f(x) = g(x) for every rational
number x. If f and g are continuous at a point c then f(c) = g(c).

3)Let f, g : R → R are functions such that f(x) = g(x) for every irrational
number x. If f and g are continuous at a point c then f(c) = g(c).

Example: Let g : R→ R be a function defined as,
g(x) = 2x, if x is rational and
g(x) = x+ 3, if x is irrational.
Find all points at which g is continuous.

Solution: Let g be continuous at a point c.
Case1) c is a rational number.
Let h(x) = x + 3 for all x ∈ R. Clearly h is continuous function at point c.
Also h(x) = g(x) for all irrational numbers x, therefore by note 3) h(c) = g(c).
That is c+ 3 = 2c, hence c = 3.
Case 2) c is an irrational number.
Let f(x) = 2x for all x ∈ R. Clearly f is continuous function at point c. Also
f(x) = g(x) for all rational numbers x, therefore by note 2) f(c) = g(c). That
is 2c = c + 3, hence c = 3, which is a contradiction since c is an irrational
number.
Therefore function g is continuous only at c = 3.

Example: Find all possible continuous functions f on R such that, f(x+y) =
f(x)f(y), ∀x, y ∈ R.
Solution: Since f(0) = f(0 + 0) = f(0)f(0) = (f(0))2, therefore f(0) =
0 or f(0) = 1.
Case 1) f(0) = 1.
Since f(0) = f(1 + (−1)) = f(1)f(−1), therefore f(−1) = 1

f(1) = (f(1))−1.

Let p
q be a rational number where p, q are integers, q > 0.

Consider f(pq ) = f(1q + 1
q + 1

q + ...+ 1
q (|p| times) )

= f(1q ) f(1q ) f(1q ) ... f(1q ) (|p| times )

= [f(1q )]p = [(f(1q ))q]
p
q = [f(1q · q)]

p
q = (f(1))

p
q .

Therefore f(x) = (f(1))x for every rational number x.
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Hence by previous example f(x) = (f(1))x for any real number x.
Case 2) f(0) = 0.
For any real number x, f(x) = f(x+ 0) = f(x)f(0) = 0.

Example: Discuss the continuity of the function
h(x) = max {f(x), g(x)} , ∀ x ∈ R, where f and g are continuous functions
on R.
Solution: We know for any two real numbers a, b, max{a, b} = a+b+|a−b|

2 .
Therefore for any real number x,
h(x) = max{f(x), g(x)} = f(x)+g(x)+|f(x)−g(x)|

2

= (f+g)(x)+|(f−g)(x)|
2 .

Since f, g are continuous on R, f + g, |f − g| are continuous on R.
Hence h is continuous on R.

Example: Discuss continuity of the function f at x = 0 where,
f(x) = sin( 1x), x 6= 0, and f(0) = 0.

Solution: Let ε = 0.5 > 0 and δ > 0 be any real number. By Archimedian
property choose n,m ∈ N such that, x1 = 1

(2n+1)π
2
< δ and x2 = 1

mπ < δ.

Then, |f(x1)− f(x2)| = |(−1)n − 0| = 1 > 0.5.
So lim

x→0
f(x) does not exist. Therefore f is discontinuous at the point 0.

Exercises:

1. Discuss the continuity of following functions.
1) For x ∈ R, f(x) = x if x is rational; f(x) = 1− x if x is irrational.
2) h = min {f, g}, where f and g are continuous functions on R.

2. Find all possible continuous functions f on R in each case:
1)f(xy) = f(x)f(y), ∀x, y ∈ R.
2)f(x+ y) = f(x) + f(y), ∀x, y ∈ R.
3)f(xy) = f(x) + f(y), ∀x, y ∈ R.

Continuous Functions on Intervals

Let A ⊆ R, f : R→ R. We say that f is continuous on set A if f is continuous
at every point of A.

Definition: A function f : A→ R (A ⊆ R) is said to be bounded on the set
A if these exists M > 0 such that |f(x)| ≤M ∀x ∈ A.
Note: Let A ⊆ R, f : A→ R, then the Range of f or the image of A under
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f is the set {f(x) ∈ R | x ∈ A}. Thus a function f is bounded if and only if
its range is a bounded set.

Example: Let f : (0, 1)→ R, f(x) = 1
x , then f is not bounded on (0, 1).

To see this, let M > 1 be any given number. Let x = 1/2M. Then clearly,
x ∈ (0, 1) and 1/x = 2M > M so that |f(x)| = 1/x > M .

Example: Let f : (1, 2) → R, f(x) = 1
x , then f is bounded on (1, 2), since

|f(x)| ≤ 1, ∀x ∈ (1, 2).

Example: Let f : (1,∞)→ R, f(x) = 1
x , then f is bounded on (1,∞) since

|f(x)| ≤ 1, ∀x ∈ (1,∞).

Example: Let f : (0, 1]→ R, f(x) = e
1
x , then f is not bounded on (0, 1].

Example: Let f : [1,∞)→ R, f(x) = e
1
x , then f is bounded on [1,∞) since

|f(x)| ≤ e, ∀x ∈ [1,∞).

Definition : Let f be a real-valued function defined on a set S ⊆ R. The
function f is said to have an absolute maximum value on the set S if there is
at least one point c in S such that f(x) ≤ f(c), ∀x ∈ S. The number f(c) is
called the absolute maximum value of f on S.

We say that f has an absolute minimum value on S if there is a point
d ∈ S such that f(x) ≥ f(d), ∀x ∈ S, and then f(d) is called the absolute
minimum value of f on S.

Theorem: Boundedness Theorem For Continuous Functions.
Let a function f be continuous on a closed and bounded interval [a, b]. Then
f is bounded on [a, b].

Proof: We prove the result by contradiction. Assume that f is unbounded
(i.e. not bounded) on [a, b].

Since [a, b] = [a, c]∪ [c, b] where b+a
2 = c is the midpoint of [a, b], and since

f is unbounded on [a, b], we see that f is unbounded on [a, c] or [c, b]. Denote
by [a1, b1] the subinterval on which f is unbounded; if f is unbounded on both
the subintervals, let [c, b] = [a1, b1].

Since [a1, b1] = [a1, c1]∪ [c1, b1] where b1+a1
2 = c1 is the midpoint of [a1, b1],

and since f is unbounded on [a1, b1], we see that f is unbounded on [a1, c1]
or [c1, b1]. Denote by [a2, b2] the subinterval on which f is unbounded; if f is
unbounded on both the subintervals, let [c1, b1] = [a2, b2].

Continuing in this way, let, for each n, [an+1, bn+1] denote that half of
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[an, bn] on which f is unbounded. Note that the length of [an, bn] = b−a
2n , and

a ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ bn ≤ · · · ≤ b2 ≤ b1 ≤ b, for all n.

Let A = {a, a1, a2, · · · }. Then A ⊆ [a, b], so that A is a non-empty bounded
set of real numbers. Hence the supremum of A exists. Let α = supA. Clearly,
a ≤ α ≤ b.

(i) Let a < α < b.

Since f is continuous at α, for ε = 1, ∃ δ > 0 such that
|x− α| < δ ⇒ |f(x)− f(α)| < 1.

Now |f(x)| = |f(x)− f(α) + f(α)| ≤ |f(x)− f(α)|+ |f(α)|.
Hence |x− α| < δ ⇒ |f(x)| < 1 + |f(α)|.
So, f is bounded on I = (α− δ, α+ δ).

Here a ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ · · · . Since α = supA, corresponding to
the above δ, there exists m such that am > α − δ. Now choose n ≥ m such
that bn − an = b−a

2n < δ. Then α− δ < am ≤ an < bn < an + δ ≤ α+ δ. Hence
[an, bn] ⊆ (α− δ, α+ δ) = I. Hence f is bounded on [an, bn], which contradicts
the choice of [an, bn].

(ii) Let α = b.

Then clearly, α = bn = b for all n. Then since f is continuous at α, for
ε = 1, ∃ δ > 0 such that
x ∈ I = (α− δ, α]⇒ |f(x)− f(α)| < 1.
So, as before, f is bounded on I, also there exists n such that [an, bn] ⊆ I.
Hence f is bounded on [an, bn], which is a contradiction.

(iii) Let a = α.

Then clearly, a = an = α for all n. Then since f is continuous at α, for
ε = 1, ∃ δ > 0 such that
x ∈ I = [α, α+ δ)⇒ |f(x)− f(α)| < 1.
Hence, as before, f is bounded on I. Choose n such that bn − an = b−a

2n < δ.
Then α = an < bn < an + δ = α+ δ. Hence [an, bn] ⊆ [α, α+ δ) = I. Hence f
is bounded on [an, bn], which is a contradiction.

Hence our assumption gives a contradiction in all cases. Hence f is bounded
on [a, b].

Example: The function f(x) = x2 + 1 is continuous and bounded on (0, 1)
but does not attain infimum or supremum on (0, 1).
Here supremum of f = 2 and infimum f = 1. If there is c ∈ (0, 1) such that
f(c) = 2, then c2 + 1 = 2 that is, c2 = 1, therefore c = ±1 which is not in
(0, 1). A contradiction to c ∈ (0, 1). Therefore f does not attains its supre-
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mum. Similarly f does not attain its infimum.

Example: The function f(x) = sin( 1x), x 6= 0 and f(0) = 0 is discontinuous
at 0 ∈ [−1, 1]. Also it attains its infimum −1 and supremum 1 on [−1, 1].

Example: Let f(x) = 2x, ∀ x ∈ [0, 1); f(x) = −x + 2, ∀ x ∈ [1, 2) and
f(x) = 1, ∀ ∈ [2, 3] be a function on [0, 3].
The function f is discontinuous at points 1, 2 ∈ [0, 3], bounded on [0, 3] and it
does not attain its supremum 2 on [0, 3].

Example: If every continuous function on a non-empty interval I is bounded
then show that I is a closed bounded interval.
Solution: If I is unbounded then the function f(x) = x is continuous and
unbounded on I. Therefore I must be bounded.
Since I is bounded in R, by completeness property of R, a = inf(I) and
b = sup(I) exists in R.
If I is not closed then either a or b does not belong to I. Without loss of
generality, suppose a /∈ I. Therefore the function g(x) = 1

x−a is continuous
and unbounded on I,a contradiction.
Therefore I must be closed.

Theorem: Extreme - Value Theorem For Continuous Functions.
If f is a continuous function on a closed and bounded interval [a, b], then there
exist points c and d in [a, b] such that f(c) = sup f and f(d) = inf f.

(Here sup f = supS and inf f = inf S, where S = {f(x)|x ∈ [a, b]}.)
Proof: We know that since f is a continuous function on the closed and
bounded interval [a, b], f is bounded on [a, b]. Hence M = supS and m = inf S
both exist on [a, b].

We will prove that f attains its supremum in [a, b]. The result for the
infimum will follow as a consequence because inf f = sup(−f) and −f is
continuous on [a, b] since f is so.

Let M = sup f. If possible, suppose that there is no x in [a, b] such that
f(x) = M.
Let g(x) = M − f(x). Then g(x) > 0, ∀x ∈ [a, b]. Also, g is continuous on
[a, b]. Hence 1

g is continuous on [a, b]. Hence 1
g is bounded on [a, b]. So, ∃K > 0

such that ∀x ∈ [a, b], 1
g(x) < K,

i.e. 1
M−f(x) < K or M − f(x) > 1

K .

∴ ∀x ∈ [a, b], f(x) < M − 1
K ,
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which is contradiction since M is the least upper bound (supremum) of f on
[a, b] and M − 1

K < M.
∴ ∃ c ∈ [a, b] such that f(c) = sup f.

Theorem: Bolzano’s Theorem (Location of roots theorem).
Let f be a continuous function on a closed and bounded interval [a, b] and
assume that f(a) and f(b) have opposite sings. Then there is at least one c in
the open interval (a, b) such that f(c) = 0.

Proof: Assume f(a) < 0 and f(b) > 0. Let S = {x ∈ [a, b] | f(x) ≤ 0}. Then
a ∈ S. Also, S ⊆ [a, b] so that S is a non-empty bounded set of real numbers.
Hence the supremum of S exists, say c.

Now the possibilities are: f(c) < 0 or f(c) > 0 or f(c) = 0.

Let f(c) < 0. As f is continuous at c ∈ [a, b], lim
x→c

f(x) = f(c). Hence taking

ε = −1
2 f(c), ∃ δ > 0 such that

x ∈ (c− δ, c+ δ)⇒ f(c)− ε < f(x) < f(c) + ε,
so x ∈ [c, c+ δ)⇒ f(x) < 1

2f(c) < 0.
Hence [c, c+ δ) ⊆ S. In particular, c+ 1

2δ ∈ S. This is a contradiction because
c = supS and c+ 1

2δ > c. Hence f(c) < 0 is not possible.

Let f(c) > 0. As f is continuous at c ∈ [a, b], lim
x→c

f(x) = f(c). Hence taking

ε = 1
2f(c), ∃ δ > 0 such that

x ∈ (c− δ, c+ δ)⇒ f(c)− ε < f(x) < f(c) + ε,
so x ∈ (c− δ, c)⇒ 0 < 1

2f(c) < f(x).

But c = supS. Hence corresponding to the above δ, there exists a point
x0 ∈ S such that c > x0 > c − δ. Then f(x0) ≤ 0 as x0 is in S. This is a
contradiction since as shown above, f(x) > 0 in (c− δ, c).

Hence we must have f(c) = 0, as required.

Note: The above theorem says that if f is a continuous function on a closed
and bounded interval [a, b] with f(a) < 0 < f(b) or f(b) < 0 < f(a), then
graph of the function f intersects X axis at a point between a and b.

Theorem: The Intermediate - Value Theorem for Continuous Functions.
Let f be a continuous function on a closed and bounded interval [a, b]. Let
x1, x2 ∈ [a, b] such that x1 < x2 and f(x1) 6= f(x2). Then f takes on every
value between f(x1) and f(x2) somewhere in the interval (x1, x2).

Proof: Since f(x1) 6= f(x2), suppose f(x1) < f(x2) and let K be such that
f(x1) < K < f(x2).
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Let g(x) = f(x)−K, x ∈ [x1, x2].
As f is continuous on [x1, x2] ⊆ [a, b], g is continuous on [x1, x2]. Note that

g(x1) = f(x1)−K < 0 and

g(x2) = f(x2)−K > 0.

∴ by Bozano’s Theorem ∃ c ∈ (x1, x2) such that g(c) = 0 i.e. f(c) −K = 0
i.e. f(c) = K.

Note: Converse of the intermediate value theorem is not true.
For example the function f(x) = sin( 1x), x 6= 0 ; f(0) = 0 satisfies the
intermediate value property on [−1, 1], but f is not continuous at 0 ∈ [−1, 1].

Example: Given a real-valued function f which is continuous on the closed
interval [0, 1]. Assume that 0 ≤ f(x) ≤ 1 for each x ∈ [0, 1]. Prove that there
is at least one point c in [0, 1] for which f(c) = c. Such a point is called a fixed
point of f.

Solution: Let g(x) = f(x)− x, x ∈ [0, 1]. Then g is continuous in [0, 1] and

g(0) = f(0)− 0 = f(0) ≥ 0,

and g(1) = f(1)− 1 ≤ 0.

∴ by Bolzano’s theorem ∃ c ∈ [0, 1] such that g(c) = 0 i.e. f(c) − c = 0 i.e.
f(c) = c.

Example: Let f be a continuous function on a closed and bounded interval
[a, b]. Show that the image of [a, b] under f, namely

f([a, b]) = {f(x) | x ∈ [a, b]},
is a closed and bounded interval.

Solution: By Boundedness theorem, the supremum and infimum of f([a, b])
both exist.
Let m = inf f([a, b]),M = sup f([a, b]).
By extreme value theorem, ∃ c, d ∈ [a, b] such that m = f(c) and M = f(d).
Hence by intermediate value theorem, f([a, b]) = [m,M ] = [f(c), f(d)], as was
to be shown.

Example: Show that the equation 2xx− 1 = 0 has at least one root in (0, 1).

Solution: Let f(x) = 2xx− 1. Clearly, f is continuous in [0, 1].
Since f(0) = 20 × 0− 1 = −1 < 0
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and f(1) = 21 × 1− 1 = 2− 1 = 1 > 0,
by Bolzano’s theorem it follows that ∃ c ∈ (0, 1) such that f(c) = 0 i.e.
2c × c− 1 = 0.
∴ c ∈ (0, 1) is a root of 2x × x− 1 = 0.

Exercises:

1. Show that the equation x = cosx has a solution in the interval
[
0, π2

]
.

2. Show that the polynomial p(x) = x4+7x3−9 has at least two real roots.

3. Does there exist a function which is bounded on [a, b] but does not attain
maximum or minimum on [a, b]? Justify your answer.

4. Let f be a polynomial of degree n, say f(x) =
n∑
k=0

akx
k, such that the

first and last coefficients a0 and an have opposite signs. Show that
f(x) = 0 for at least one positive x.

5. Let f(x) = tanx. Although f
(
π
4

)
= 1 and f

(
3π
4

)
= −1, there is no x

in the interval
(
π
4 ,

3π
4

)
such that f(x) = 0. Explain why this does not

contradict Bolzano’s theorem.

Exercises on Limits and Continuity

1. Prove the following by using the definition of limit:

(a) lim
x→1

(x2 + 9) = 10 (b) lim
x→3

2

x+ 9
=

1

6

(c) lim
x→−6

x+ 4

x− 2
=

1

4
(d) lim

x→1

x+ 3

3 +
√
x

= 1.

2. Compute the following limits:

(a) lim
x→3

x4 − 81

2x2 − 5x− 3
(b) lim

x→0

x3 − 7x4

x3

(c) lim
x→2

1

x2
(d) lim

x→a

x2 − a2

x2 + 2ax+ a2
, a 6= 0.

3. Use lim
x→0

sinx

x
= 1 to evaluate the following limits:

(a) lim
x→0

sin 2x

x
(b) lim

x→0

sin 5x− sin 3x

x



51

(c) lim
x→0

sinx− sin a

x− a
(d) lim

x→0

1− cosx

x2
.

4. Compute following limits using sandwich theorem:

(a) lim
x→∞

5− cosx

x+ 9
(b) lim

x→0−
x3 cos

(
3

x

)
(c) lim

x→−∞

3x2 − sin 4x

x2 + 10
(d) lim

x→1

x2

x2 + 1
.

5. Compute following limits:

(a) lim
x→∞

x6 − 10

x6 + 10
(b) lim

x→−∞

ex

2 + 3e3x

(c) lim
x→∞

7x

5x + 3x
.

6. Find the number A which makes the function

f(x) =

{
x2 − 2 , x < 1
Ax− 4 , 1 ≤ x continuous at x = 1.

7. Discuss the continuity of the function f defined on R thus:

f(x) =

{
1, if x is rational,
0, if x is irrational.

8. Discuss the continuity of

f(x) =


x−6
x−3 , x < 0

2 , x = 0√
x2 + 4 , x > 0.

9. Discuss the continuity of f(x) = x3+1
x2+1

at x = −1.

10. Determine the set of points at which f(x) = x2+3x+5
x2+3x−7 is continuous.

11. Determine the points at which f(x) =
√
x2 − 2x is continuous.

12. Examine the continuity of the following functions at x = 0 :

(a) f(x) =

{
(1 + x)1/x , x 6= 0

1 , x = 0

(b) f(x) =

{
(1 + 2x)1/x , x 6= 0

e2 , x = 0
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(c) f(x) =

{
e−1/x

2
, x 6= 0

1 , x = 0.

(d) f(x) =

{
ex

2

e1/x
2−1

, x 6= 0

1 , x = 0.

13. Let

f(x) =

{
sinx , x ≤ c
ax+ b , x > c

where a, b and c are constants. If b and c are given, find all values of a
(if any exist) for which f is continuous at the point x = c.

14. (a) Use the inequality | sinx| < |x|, for 0 < |x| < π
2 , to prove that the

sine function is continuous at 0.
(b) Use part (a) to prove that the cosine function is continuous at 0.
(c) Use parts (a) and (b) to prove that the sine and cosine functions are
continuous at any real x.

15. Use the inequality 0 < cosx < sinx
x < 1

cosx for 0 < x < π
2 , to prove that

lim
x→0

sinx

x
= 1.

16. Given a real-valued function f which is continuous on a closed and
bounded interval [a, b]. Assume that f(a) ≤ a and that f(b) ≥ b. Prove
that f has a fixed point in [a, b].

17. Show that every polynomial of odd degree with real coefficients has at
least one real root.

18. Let f be a continuous function on interval [0, 1] such that
f(0) = f(1). Show that there exists a point c ∈ [0, 12 ] such that f(c) =
f(c+ 1

2).
(Hint: Consider g(x) = f(x)− f(x+ 1

2), x ∈ [0, 1/2]).

19. Suppose f : [0, 1] → R is continuous and takes on only rational values.
Show that f is a constant function.
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CHAPTER 3

Differentiation

The derivative is a central concept of differential calculus. The deriative is a
measure of how a function changes as its input changes. It can be thought
as how much one quantity is changing in response to changes in some other
quantity. The process of finding the derivative is called differentiation.

The Derivative:

Definition: Suppose a function f is defined on an open interval containing a

point a. If the limit, lim
x→a

f(x)− f(a)

x− a
exists, then we say that f is differentiable

(or derivable) at a and the derivative of f at a is denoted by f ′(a).

So, f ′(a) = lim
x→a

f(x)− f(a)

x− a
.

If we take x = a+ h, then

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

Right hand and left hand derivatives:

If lim
h→0+

f(a+ h)− f(a)

h
exists, then it is called the right hand derivative of f

at a, and is denoted by f ′+(a). Similarly, if lim
h→0−

f(a+ h)− f(a)

h
exists, then

it is called the left hand derivative of f at a, and is denoted by f ′−(a). Clearly,
f ′(a) exists iff f ′+(a) and f ′−(a) both exist and are equal.

Examples:

1. The derivative of a constant function is 0 (zero) at any real number a.

2. Let f(x) = x2.
To find the derivative of f(x) at point a.

Consider lim
h→0

f(a+ h)− f(a)

h
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= lim
h→0

(a+ h)2 − a2

h
= lim

h→0
2a+ h

= 2a.
Therefore, f ′(a) = 2a.

3. Let f(x) =
√
x, x ≥ 0. Let ageq0 be any point.

Then lim
x→a

f(x)− f(a)

x− a
= lim

x→a

√
x−
√
a

x− a
= lim

x→a

1√
x+
√
a

.

Hence, if a 6= 0, then f ′(a) =
1

2
√
a

and

if a > 0, then f ′+(0) = lim
x→0+

1√
x

does not exist so that f is not derivable

at 0.

4. Let f(x) = |x|, ∀x ∈ R.

Then lim
x→a

f(x)− f(a)

x− a
= lim

x→a

|x| − |a|
x− a

= lim
x→a

x2 − a2

(x− a)(|x|+ |a|)
Hence, if a 6= 0, then f ′(a) =

a

|a|
=
a

a
= 1 if a > 0

= a
−a = −1 if a < 0.

But if a = 0, then

f ′+(0) = lim
x→0+

x

|x|
= 1 and f ′−(0) = lim

x→0−

x

|x|
= −1.

So, f ′+(0) 6= f ′−(0).
Hence, f is not derivable at 0.

Theorem 1 If f is derivable at a point a, then f is continuous at a.

Proof: Suppose f is derivable at a, so that lim
x→a

f(x)− f(a)

x− a
exists and is

f ′(a). Hence
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lim
x→a

f(x) = lim
x→a

[
f(x)− f(a)

x− a
(x− a) + f(a)

]
= f ′(a) · 0 + f(a)
= f(a).

Therefore f is continuous at a.

Note: The converse of the above theorem is not true.
For example, let f(x) = |x|, ∀x ∈ R.
Then f is continuous at 0, but as shown in example 4 above, f is not derivable
at 0.

Example: Determine whether the function h(x) = x|x|, x ∈ R, is differen-
tiable and find the derivative if it exists.
Solution: Here, h(x) = x|x| = x2 if x > 0

= 0 if x = 0
= −x2 if x < 0.

Clearly, h′(x) = 2x if x > 0
= −2x if x < 0.

Let us check whether h is differentiable at 0.

h′+(0) = lim
x→0+

h(x)− h(0)

x− 0

= lim
x→0

x2

x
= lim

x→0
x

= 0,

h′−(0) = lim
x→0−

h(x)− h(0)

x− 0

= lim
x→0

−x2

x
= lim

x→0
−x

= 0.
Therefore, h′+(0) = h′−(0) = 0.
Therefore, h is differentiable at 0 and h′(0) = 0.
Hence, h is differentiable at each x ∈ R.

Geometrical interpretation of derivative:
Consider two points A[a, f(a)] and B[b, f(b)] on the graph of the curve y =
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f(x). Let the chord BA meet X− axis at C so that ∠XCB is its inclination.
Draw ordinates AP , BQ and draw AR ⊥ QB.

We have AR = PQ = h and RB = QB − PA = f(a+ h)− f(a).

Therefore, tan(∠XCB) = tan(∠RAB) =
RB

AR
=
f(a+ h)− f(a)

h
. (1)

As h approaches 0, the point B moving along the curve approaches the point
A, the chord AB approaches tangent line TA and ∠XCB approaches ∠XTA
which is the inclination, say θ, of the tangent at A.
On taking limits as h→ 0, the equation (1) gives

tan θ = f ′(a).

Thus, f ′(a) is the slope of the tangent to the curve y = f(x) at the point
A[a, f(a)].

Note: The slope of the tangent at a point of a curve is also known as the
Gradient of the curve at that point.

Example: Check whether the function f(x) = | log(x)| is differentiable at
x = 1.
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Solution: At x = 1,
f(x+ h)− f(x) = f(1 + h)− f(1)

= | log(1 + h)| − | log 1|
= | log(1 + h)|

Therefore,
f(x+ h)− f(x)

h
=

log(1 + h)

h
if h > 0

=
− log(1 + h)

h
if −1 < h < 0.

So, f ′+(1) = lim
h→0+

f(1 + h)− f(1)

h

= lim
h→0

log(1 + h)

h
= 1,

and f ′−(1) = lim
h→0+

f(1 + h)− f(1)

h

= lim
h→0

− log(1 + h)

h
= −1.

Therefore, f ′+(1) 6= f ′−(1).
So, f ′(1) does not exist.
Therefore, f is not differentiable at x = 1.

Example: If f(x) = x sin
(
1
x

)
when x 6= 0 and f(0) = 0, show that f is

continuous but not derivable for x = 0.
Solution: We have

|f(x)− f(0)| = |x sin

(
1

x

)
| = |x|| sin

(
1

x

)
| ≤ |x|.

Given any ε > 0 taking δ = ε, we have |f(x) − f(0)| ≤ |x| < ε whenever
|x− 0| < δ.
Therefore, lim

x→0
f(x) = 0 = f(0).

Therefore, f is continuous at 0. Next,

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

x sin
(
1
x

)
x

= lim
x→0

sin

(
1

x

)
.
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But, lim
x→0

sin

(
1

x

)
does not exist.

Therefore, f ′(0) does not exist.
Therefore, f is not derivable at x = 0.

Exercises:

1. Using the definition of derivative, find the derivative of the following
functions:

(a) f(x) =
1

x
, ∀x ∈ R, x 6= 0

(b) f(x) = x3

(c) f(x) = xn, n ∈ N
(d) f(x) = 3x

(e) f(x) = cosx.

2. The motion of a particle moving in a straight line is specified by the
formula S = t2 + 2t+ 3. Find the velocity of motion (i) initially, (ii) at
the end of 3 seconds.

3. Discuss the derivability of the function f given by
f(x) = x2, x < 1

= 2− x, 1 ≤ x ≤ 2
= −x2 + 3x− 2, x > 2,

at x = 1, 2.

4. Give an example to show that the derivative of a continuous function is
not always a continuous function.

5. Check whether the function f defined by f(x) = |x−2|+ |x| is derivable
at x = 0, 2.

6. If a function f is defined by f(x) =
xe

1
x

1 + e
1
x

, x 6= 0

= 0, x = 0,
show that f is continuous but not derivable at x = 0.

7. Show that the function f(x) = |x − a|φ(x) where φ(x) is a continuous
function and φ(a) 6= 0, has no derivative at the point x = a.
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8. Find the coefficients c and d so that the function
f(x) = x2, if x ≤ a

= cx+ d, if x > a
is continuous and derivable at a.

Differentiability of a function over an interval:
A function f is said to be differentiable on an open interval I if it is differen-
tiable at each a ∈ I. If I = [c, d] then f is differentiable on I if

(i) f ′+(c) exists and
(ii) f ′−(d) exists and

(iii) f ′+(a) = f ′−(a) for each a such that c < a < d.

Example: Define f : [−1, 2]→ R as follows:
f(x) = x if −1 ≤ x < 0

= sinx if 0 ≤ x < 1
= x2 if 1 ≤ x ≤ 2.

Solution: f ′(−1) = f ′+(−1) = lim
x→−1+

f(x)− f(−1)

x− (−1)
= lim

x→−1

x+ 1

x+ 1
= 1.

Also, f ′(2) = f ′−(2) = lim
x→2−

f(x)− f(2)

x− 2
= lim

x→2

x2 − 4

x− 2
= 4.

At x = 0, f ′+(0) = lim
x→0+

f(x)− f(0)

x− 0
= lim

x→0

sinx− sin 0

x− 0
= 1

and f ′−(0) = lim
x→0−

f(x)− f(0)

x− 0
= lim

x→0

x− sin 0

x− 0
= 1.

Therefore, f ′+(0) = f ′−(0) = 1⇒ f ′(0) = 1.

At x = 1, f ′+(1) = lim
x→1+

f(x)− f(1)

x− 1
= lim

x→1

x2 − 1

x− 1
= 2

and f ′−(1) = lim
x→1−

f(x)− f(1)

x− 1
= lim

x→1

sinx− 1

x− 1
which does not exist ⇒

f ′(1) does not exist.
Therefore, f is differentiable on [−1, 1) ∪ (1, 2].

Basic Rules of Differentiation:
There are a number of basic properties of derivatives that are very useful in
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the calculation of derivatives of various combinations of functions. We now
give a brief statement of some of these properties, which will be familiar to
the reader from earlier courses.

Theorem 2 Let f, g be functions defined on an interval containing point a
and f, g be differentiable at a. Then

1. If c ∈ R, then the function (cf) is differentiable at a and
(cf)′(a) = cf ′(a).

2. The function f + g is differentiable at a and
(f + g)′(a) = f ′(a) + g′(a).

3. Product Rule:
The function f · g is differentiable at a and
(f · g)′(a) = f ′(a) · g(a) + f(a) · g′(a).

4. Quotient Rule:
If g(a) 6= 0, then the function f/g is differentiable at a and(
f

g

)′
(a) =

f ′(a)g(a)− f(a)g′(a)

(g(a))2
.

Theorem 3 Chain Rule:
Suppose I, J are open intervals and f : I → R, f(I) ⊂ J and g : J → R.
Suppose f is differntiable at a ∈ I and g is differentiable at f(a). Then the
composite function (g ◦ f) is differentiable at a and

(g ◦ f)′(a) = g′(f(a)) · f ′(a).

Derivative of an inverse function: Suppose (i) f is a derivable function on
a closed and bounded interval [a, b] with a < b. Suppose (ii) f ′(x) 6= 0 ∀ x ∈
[a, b].

Now, (i) implies that f is continuous on [a, b] and so the range of f is also
a closed and bounded interval, say [c, d]. Further, by (ii), it can be shown that
f is actually either strictly increasing or strictly decreasing on [a, b]. Hence f
is, in particular, a one-one function on [a, b]. Hence the inverse function, f−1,
of f exists and its domain is [c, d]. Also, to describe the relation between f and
f−1, conveniently, let us write g = f−1. Then for every x in [a, b], y = f(x)
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is a unique number in [c, d]. Conversely, for every y in [c, d], there is a unique
number x in [a, b] such that y = f(x) i.e. such that x = g(y).

Thus for x in [a, b] and y in [c, d], we have

y = f(x) ⇔ x = g(y).

Now it can be shown that, under the conditions (i) and (ii) above,
(a) g is also continuous on [c, d],
(b) the inverse function, g of f is differentiable on [c, d] and for every y ∈ [c, d],(

f−1
)′

(y) =
1

f ′(x)
, where y = f(x),

i.e. g′(y) =
1

f ′(x)
, where y = f(x). (∗)

Examples:

1. Every polynomial function p(x) = a0 + a1x+ a2x
2 + . . .+ anx

n is differ-
entiable at any x ∈ R.

2. Let f(x) = tanx =
sinx

cosx
, ∀x ∈ R for which cosx 6= 0. Then

f ′(x) =
cosx d

dx sinx− sinx d
dx cosx

(cosx)2

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x
= sec2 x.

3. Let f = R → R be defined by f(x) = x5 + 4x + 3 and g = f−1. Find
g′(8).
Solution: f is continuous and one-one function on R and f ′(x) =
5x4 + 4 6= 0 for any x ∈ R. Therefore, the inverse function g = f−1

is differentiable at every x ∈ R.
Let x0 = 1⇒ f(x0) = f(1) = 8.

Thererfore, g′(8) =
1

f ′(1)
= 9.

4. Let f : (−π/2, π/2)→ (−1, 1) be defined as f(x) = sinx.
Clearly, f(x) is continuous and one-one function on (−π/2, π/2) and
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f ′(x) = cosx 6= 0, ∀x ∈ (−π/2, π/2).
So, the inverse function g(y) = f−1(y) = sin−1 y is differentiable at every
y ∈ (−1, 1) and

g′(y) =
1

f ′(x)
=

1

cosx
=

1√
1− sin2 x

=
1√

1− y2
, y ∈ (−1, 1).

5. Find the derivatives of the following functions:

(a) f(x) = (2x2 + 5x+ 3)4

(b) f(x) = 3sinx

(c)

√
x+

√
x+
√
x

(d) f(x) = sinh 3x cosh(x/5)

Solution:

(a) f ′(x) = 4(2x2 + 5x+ 3)3(4x+ 5)

(b) f ′(x) = 3sinx log 3(cosx) = 3sinx cosx log 3

(c) f ′(x) =
1

2

√
x+

√
x+
√
x

[
1 +

1

2
√
x+
√
x

(
1 +

1

2
√
x

)]

(d) f ′(x) = 3 cosh 3x cosh(x/5) +
1

5
sinh 3x sinh(x/5).

6. Show that the function y = xe−x satisfies the equation xy′ = (1 − x)y.
Solution: y′ = e−x − xe−x = (1− x)e−x.
Therefore, xy′ = (1− x)y.

Exercises:

1. Find the derivatives of the following functions:

(a) y = (sinx)cosx

(b) y = 3

√
sin 2x

1− sin 2x

(c) f(x) = coth(tanx)− tanh(cotx)

(d) f(x) =
ex + sinx

xex
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(e) f(x) = | sinx|

(f) f(x) =
x

1 + x2
.

2. Determine whether each of the following functions is differentiable and
find the derivative wherever it exists:

(a) f(x) = x+ |x|
(b) f(x) = |x|+ |x+ 1|
(c) f(x) = | sinx|

(d) f(x) =
√

1−
√

1− x2.

3. Show that the function y =
−e−x2

2x2
satisfies the differential equation

xy′ + 2y = e−x
2
.

4. Given that the function h(x) = x3 + 2x + 1 for x ∈ R, has an inverse
h−1 on R, find the value of h−1

′
(y) at the points corresponding to x =

0, 1,−1.

5. Prove that the derivative of a differentiable even function is an odd
function and the derivative of an odd function is an even function.

6. Prove that the derivative of a periodic function with period T is a peri-
odic function with period T .

7. Find f ′(x) if f(x) =

∣∣∣∣∣∣
x 1 0
x2 2x 2
x3 3x2 6x

∣∣∣∣∣∣ .
8. For u =

1

2
log

(
1 + v

1− v

)
. Check the relation

du

dv

dv

du
= 1.

Mean Value Theorems:
In this section we are going to study the mean value theorems, which relate
the values of a function to values of its derivative.
We begin by studing the relationship between the relative extrema of a function
and the values of its derivative.

Let I be an interval. A function f : I → R is said to have:
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1. a relative maximum at point a ∈ I if there exists a neighborhood V of
a such that f(x) ≤ f(a) for all x ∈ V ∩ I.

2. a relative minimum at point a ∈ I if there exists a neighborhood V of a
such that f(a) ≤ f(x) for all x ∈ V ∩ I.

We say, f has a relative exremum at a ∈ I if it has either a relative maximum
or a relative minimum at a.

Theorem 4 : Let a be an interior point of I and f : I → R have a relative
extremum at a. If f ′(a) exists then f ′(a) = 0.

Proof: We prove the result for the case that f has a relative maximum at a.
The proof for the case of a relative minimum is similar.
Now, f ′(a) exists and f ′(a) ∈ R.
So exactly one of the following is true:

1. f ′(a) > 0,

2. f ′(a) < 0,

3. f ′(a) = 0

First, suppose f ′(a) > 0.
By definition of derivative, there exists a neighborhood V ⊆ I of a such that
f(x)− f(a)

x− a
> 0 for x ∈ V, x 6= a.

If x ∈ V ⊆ I and x > a, then

f(x)− f(a) = (x− a)
f(x)− f(a)

x− a
> 0.

So, f(x) > f(a) which contradicts to the hypothesis thatf has relative maxi-
mum at a.
Therefore f ′(a) > 0 is impossible.
Similarly, we cannot have f ′(a) < 0.
Therefore, we must have f ′(a) = 0.

Note:

1. Let f : I → R and c ∈ I. If f ′(c) = 0 or f ′(c) is undefined ,then c is
called as a critical point for f .
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2. The only domain points where a function can assume extreme values are
critical points and end points.

Theorem 5 : (Rolle’s Theorem)
Suppose a < b and f : [a, b]→ R is

1. continuous on [a, b],

2. derivable on (a, b) and

3. f(a) = f(b).

Then there exists a point c ∈ (a, b) such that f ′(c) = 0.

Proof: f is continuous on [a, b]. So, f is bounded on [a, b] and attains its
maximum value M and minimum value m on [a, b].
Hence, ∃ c, d ∈ [a, b] such that f(c) = M and f(d) = m. Clearly, m ≤M .
If m = M , then f is constant on [a, b]. Therefore, f ′(x) = 0, ∀x ∈ (a, b).
If, m < M , then the numbers m and M cannot both be equal to the equal
values f(a) and f(b).
So, first let M = f(c) 6= f(a).
Then c ∈ (a, b). Hence, by (2), f ′(c) exists.
We now show that f ′(c) = 0.
Since f(x) ≤ f(c), ∀x ∈ [a, b], we have

f(x)− f(c)

x− c
≥ 0 for x < c

and
f(x)− f(c)

x− c
≤ 0 for x > c.

Hence, as x→ c−, we get f ′−(c) ≤ 0
and as x→ c+, we get f ′+(c) ≥ 0.
Since f ′(c) = f ′−(c) = f ′+(c), we thereforeget f ′(c) = 0.
So, c is the required point.
A similar proof shows that if m = f(d) 6= f(a), then d is the required point.

Geometrical interpretation of Rolle’s theorem:
Geometrically, Rolle’s theorem says that, if f is continuous function on [a, b]
and if the graph of f has a tangent at each point between the points (a, f(a))
and (b, f(b)), which are on the same level, then there is a point c (a < c < b)
such that the tangent to the graph of f at point (c, f(c)) is parallel to the
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X−axis, that is, f reaches its maximum or minimum value at an interior
point of [a, b].

Examples:

1. Let p be a polynomial of degree n ≥ 2. Show that between any two
distinct roots of p there is a root of p′.
Solution: Let p(x) = a0x

n + a1x
n−1 + . . .+ an−1x+ an, a0 6= 0

be a polynomial of degree n and let a and b be distinct roots of p(x)
with a < b.
So, p(a) = p(b) = 0. Clearly, p is continuous on [a, b] and derivable on
(a, b).
All conditions of Rolle’s theorem are satisfied.
So, there exists c ∈ (a, b) such that p′(c) = 0.
Therefore, a root of p′ lies between the roots a, b of p.

2. Verify Rolle’s theorem for the function

f(x) = ex(sinx− cosx) on

[
π

4
,
5π

4

]
.

Solution: Here, f(x) = ex(sinx− cosx).
f(π/4) = eπ/4(sin(π/4)− cos(π/4))
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= eπ/4((1/
√

2)− 1/
√

2)
= 0.

f(5π/4) = e5π/4(sin(5π/4)− cos(5π/4))
= eπ/4((−1/

√
2) + 1/

√
2)

= 0.

Therefore, f
(π

4

)
= f

(
5π

4

)
.

Clearly, f is continuous on

[
π

4
,
5π

4

]
. Also, f is differentiable and

f ′(x) = ex(sinx− cosx) + ex(cosx+ sinx) ∀x ∈
(
π

4
,
5π

4

)
.

So, all conditions of Rolle’s theorem are satisfied.

Hence, there must exist c ∈
(
π

4
,
5π

4

)
such that f ′(c) = 0.

To verify this, let f ′(c) = 0.
i.e. ec(sin c− cos c) + ec(cos c+ sin c) = 0
i.e. 2ec sin c = 0
i.e. sin c = 0 (∵ 2ec 6= 0)
i.e. c = nπ, n ∈ Z.

So, c = π ∈
(
π

4
,
5π

4

)
satisfies f ′(c) = 0.

Hence, Rolle’s theorem is verified.

3. If f(x) = (x − 3) log x then show that the equation x log x = 3 − x for
some x ∈ (1, 3).
Solution: Here, f(x) = (x− 3) log x.
f(1) = (1− 3) log 1 = 0, f(3) = (3− 3) log 3 = 0.
∴ f(1) = f(3).
Clearly, f is continuous on [1, 3] and differentiable on (1, 3).
∴ By Rolle’s theorem, ∃c ∈ (1, 3) such that f ′(c) = 0.
Here, f(x) = (x− 3) log x.

Therefore, f ′(x) = (x− 3)
1

x
+ log x, x > 0.

∴ f ′(c) = 0 gives
c− 3

c
+ log c = 0.

∴ (c− 3) + c log c = 0.
∴ c log c = 3− c.
∴ c ∈ (1, 3) satisfies the equation x log x = 3− x.
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Theorem 6 : (Lagrange’s Mean Value Theorem)
Suppose a < b and f : [a, b]→ R is

1. continuous on [a, b],

2. derivable on (a, b).

Then there exists a point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof: For a ≤ x ≤ b, we define

φ(x) = f(x)− kx

where k is chosen such that φ(a) = φ(b).

For this, we require f(a)− ka = f(b)− kb or k =
f(b)− f(a)

b− a
. [I]

Now f is continuous on [a, b] and differentiable on (a, b). So, φ is continuous
on [a, b] and differentiable on (a, b). Also, φ(a) = φ(b).
Therefore, by Rolle’s theorem there exists c ∈ (a, b) such that φ′(c) = 0 i.e.
f ′(c) = k i.e.

f ′(c) =
f(b)− f(a)

b− a
, using [I]

Geometrical Interpretation of LMVT:
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Geometrically, LMVT states that there exists a point c ∈ (a, b), such that the
tangent at point (c, f(c)) is parallel to the chord joining points (a, f(a)) and
(b, f(b)).

Note:

1. The expression
f(b)− f(a)

b− a
gives the ’mean value’ of the slope of f on

[a, b] and LMVT says that f ′ must attain this mean value somewhere on
(a, b).

2. If we write b − a = h and
c− a
h

= θ, then 0 < θ < 1 and c = a + θh.

Hence, LMVT can be stated as: If f = [a, a+ h]→ R is

(a) continuous on [a, a+ h],

(b) derivable on (a, a+ h),

then there exists θ ∈ (0, 1) such that

f(a+ h)− f(a) = hf ′(a+ θh).

Examples:

1. Verify LMVT forf(x) = log x on [1, e].
Solution: Here f(x) = log x, x ∈ [1, e].
Clearly, f is continuous on [1, e] and differentiable on (1, e). Also, f ′(x) =
1

x
.

To verify LMVT we have to find c ∈ (1, e) such that f ′(c) =
f(e)− f(1)

e− 1

i.e.
1

c
=

log(e)− log(1)

e− 1

i.e.
1

c
=

1

e− 1
Therefore, c = e− 1 ∈ (1, e) since e = 2.718 . . ..
Hence LMVT is verified.
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2. If 0 < a < b < 1 then prove that

b− a√
1− a2

< sin−1 b− sin−1 a <
b− a√
1− b2

.

Solution: Consider f(x) = sin−1 x, x ∈ [a, b].
Clearly, f is continuous on [a, b]. Also,

f ′(x) =
1√

1− x2
, ∀x ∈ (a, b).

Therefore, f is derivable on (a, b).

So, by LMVT, ∃c ∈ (a, b) such that f ′(c) =
f(b)− f(a)

b− a
i.e.

1√
1− c2

=
sin−1 b− sin−1 a

b− a
[I]

Here, 0 < a < c < b < 1, ∴ a2 < c2 < b2 < 1.
∴ −a2 > −c2 > −b2 > −1.
∴
√

1− a2 >
√

1− c2 >
√

1− b2.
∴ 1√

1−a2 <
1√
1−c2 <

1√
1−b2 .

Using [I], we therefore get 1√
1−a2 <

sin−1 b−sin−1 a
b−a < 1√

1−b2 .

∴ b−a√
1−a2 < sin−1 b− sin−1 a < b−a√

1−b2 .

3. Prove that | sinx− sin y| ≤ |x− y|, ∀x, y ∈ R.
Solution: Let x, y ∈ R and f(t) = sin t, t ∈ [x, y].
Clearly, f is continuous on [x, y].
Also f is derivable and f ′(t) = cos t, t ∈ (x, y).

So, by LMVT ∃c ∈ (x, y) such that f ′(c) =
f(y)− f(x)

y − x
i.e. cos c =

sin y − sinx

y − x

so that | cos c| = | sin y − sinx|
|y − x|

.

We know that | cos c| ≤ 1, ∴ | sin y−sinx||y−x| ≤ 1.

∴ | sinx− sin y| ≤ |x− y|, ∀x, y ∈ R.

Recall that a function f : I → R is said to be strictly increasing on an interval
I if for any points x1, x2 ∈ I such that x1 < x2, we have f(x1) < f(x2).
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Similarly, f is strictly decreasing on I if for any points x1, x2 ∈ I such that
x1 < x2, we have f(x1) > f(x2).

Theorem 7 : Suppose a < b and f is derivable on (a, b). Then

1. f ′(x) 6= 0, ∀x ∈ (a, b)⇒ f is a one-one function on (a, b).

2. f ′(x) = 0, ∀x ∈ (a, b)⇒ f is a constant function on (a, b).

3. f ′(x) > 0, ∀x ∈ (a, b)⇒ f is a strictly increasing function on (a, b).

4. f ′(x) < 0, ∀x ∈ (a, b)⇒ f is a strictly decreasing function on (a, b).

Proof: Let a < x < y < b, then by LMVT ∃c ∈ (x, y) such that f(y)−f(x) =
f ′(c)(y − x), [I]

1. Suppose f ′(x) 6= 0 ∀x ∈ (a, b).
To show: f is a one-one function on (a, b).
On the contrary, suppose f is not a one-one function on (a, b). Then
there exist x, y ∈ (a, b) such that x < y and f(x) = f(y). But then by
[I], ∃c ∈ (x, y) such that f ′(c) = 0
i.e. ∃c ∈ (a, b) such that f ′(c) = 0, which is a contradiction.
So, f must be one-one on (a, b).

2. Suppose f ′(x) = 0 ∀x ∈ (a, b).
To show: f is a constant function on (a, b).
On the contrary, suppose f is not constant on (a, b).
Then ∃x, y ∈ (a, b) such that x < y and f(x) 6= f(y), so by [I], we have,

∃c ∈ (x, y) such that f ′(c) =
f(y)− f(x)

y − x
6= 0.

Hence, ∃c ∈ (a, b) such that f ′(c) = 0 which is a contradiction.
So, f must be constant on (a, b).

3. Suppose f ′(x) > 0, ∀x ∈ (a, b).

Using [I], we have f ′(c) =
f(y)− f(x)

y − x
> 0.

Here, x < y ⇒ y − x > 0.
So, f(y)− f(x) > 0⇒ f(x) < f(y).
So, for any x, y ∈ (a, b) with x < y, we have f(x) < f(y).
Therefore, f is strictly increasing on (a, b).
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4. Similarly, we can prove if f ′(x) < 0, ∀x ∈ (a, b), then f is strictly
decreasing on (a, b).

Note: f is increasing on an interval I, if for any x, y ∈ I with x < y, we have
f(x) ≤ f(y).
Similarly, f is decreasing on I if for any x, y ∈ I with x < y, we have f(x) ≥
f(y).
So, by above theorem, if f ′(x) ≥ 0, ∀x ∈ I, then f is increasing on I and if
f ′(x) ≤ 0, ∀x ∈ I, then f is decreasing on I.

Thus if the derivative f ′ has a fixed sign on an interval, the f is monotonic
on that interval. This fact leads us to a test, given below, for obtaining the
local extreme points of f on [a, b].

For example, in the above figure, consider values of f near the points
c1, c2, c3. Here f is continuous on [a, b] and also derivable on [a, b] except at c3.

Now at points to the left of c1, the tangent to the graph of f makes an
acute angle with the positive x−axis, i.e. f ′(x) ≥ 0 at all these points. So f
increases on the left of c1. Also, at points to the right of c1, the tangent to the
graph of f makes an obtuse angle with the positive x−axis, i.e. f ′(x) ≤ 0 at all
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these points. So f decreases on the right of c1. Hence f is locally maximum at
c1. Similarly, the reader should check that f is locally minimum at c2. Finally,
since f is continuous at c3 and derivable in a deleted neighbourhood of c3, it
can be similarly seen that f is locally maximum at c3.
These observations lead to following test for existence of local extreme values.

Theorem 8 : (The First Derivative Test for Local Extreme Values)
Let f be continuous on an interval I = [a, b] and let c be an interior point of
I. Assume that f is differentiable on (a, c) and (c, b). Then

1. If there is a neighborhood (c − δ, c + δ) ⊆ I such that f ′(x) ≥ 0 for
c − δ < x < c and f ′(x) ≤ 0 for c < x < c + δ, then f has a local
maximum at c.

2. If there is a neighborhood (c − δ, c + δ) ⊆ I such that f ′(x) ≤ 0 for
c − δ < x < c and f ′(x) ≥ 0 for c < x < c + δ, then f has a local
minimum at c.

Proof:

1. If x ∈ (c − δ, c) then by Lagrange’s mean value theorem, there exists a
point cx ∈ (x, c) such that

f(c)− f(x) = (c− x)f ′(cx)

Since, f ′(cx) ≥ 0, we have f(c)− f(x) ≥ 0.
∴ f(c) ≥ f(x) for x ∈ (c− δ, c).
Similarly, if x ∈ (c, c+ δ) then by Lagrange’s mean value theorem, there
exists a point cx ∈ (c, x) such that

f(c)− f(x) = (c− x)f ′(cx)

But here f ′(cx) ≤ 0, also (c− x) ≤ 0.
∴ f(c)− f(x) ≥ 0
∴ f(c) ≥ f(x) for x ∈ (c, c+ δ).
Therefore, c is a point of local maximum for f .

2. Proof is similar.
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Note: Suppose I = [a, b] and f : I → R is a derivable function. If c is a point
of local extremum for f then c is either a critical point for f or an endpoint.

Examples:

1. Find the intervals on which f(x) = −x3 + 12x + 5, x ∈ (−3, 3), is in-
creasing or decreasing. Where does the function assume extreme values
and what are these values?
Solution: The function f is continuous on (−3, 3). Also, f ′ is defined
for all x ∈ (−3, 3) and
f ′(x) = −3x2 + 12 = −3(x2 − 4)

= −3(x+ 2)(x− 2).
∴ f ′(x) = 0 for x = 2,−2.
∴ x = −2, 2 are critical points for f .
These critical points subdivide (−3, 3) into subintervals (−3,−2), (−2, 2), (2, 3).

subintervals (-3, -2) (-2, 2) (2, 3)

sign of f ′(x) − + −

∴ f is increasing on (−2, 2) and decreasing on (−3,−2), (2, 3).
So, by first derivative test, we conclude that x = −2 is a point of local
minimum for f and x = 2 is a point of local maximum for f .
∴ f(−2) = −11 is minimum value for f and f(2) = 21 is maximum value
for f .

2. Show that x− x2

2
< log(1 + x) < x− x2

2(1 + x)
for x > 0.

Solution: Consider f(x) = log(1 + x)−
(
x− x2

2

)
, x ≥ 0.

∴ f ′(x) =
1

1 + x
− (1− x) =

x2

1 + x
> 0, ∀x > 0.

So, f(x) is strictly increasing on (0,∞)⇒ f(0) < f(x), ∀x > 0.

∴ log(1 + 0) < log(1 + x)−
(
x− x2

2

)
∴ 0 < log(1 + x)−

(
x− x2

2

)
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∴ x− x2

2
< log(1 + x). [I]

Now consider g(x) = x− x2

2(1 + x)
− log(1 + x), x ≥ 0.

∴ g′(x) =
x2

2(1 + x)2
> 0, ∀x > 0.

∴ g(x) is strictly increasing on (0,∞).
∴ g(0) < g(x) for 0 < x.

∴ 0 < x− x2

2(1 + x)
− log(1 + x).

∴ log(1 + x) < x− x2

2(1 + x)
. [II]

Using [I] and [II], we get

x− x2

2
< log(1 + x) < x− x2

2(1 + x)
for x > 0.

Theorem 9 : (Cauchy’s Mean Value Theorem)
Let a < b. Suppose the functions f, g : [a, b]→ R are

1. continuous on [a, b]

2. derivable on (a, b) and

3. g′(x) 6= 0 ∀x ∈ (a, b).

Then there exists a point c ∈ (a, b) such that

f ′(c)

g′(c)
=
f(b)− f(a)

g(b)− g(a)
.

Proof: If g(a) = g(b), then g satisfies all conditions of Rolle’s theorem, so
there exists c ∈ (a, b) such that g′(c) = 0. But it is given that g′(x) 6= 0, ∀x ∈
(a, b).
∴ g(a) 6= g(b).
For a ≤ x ≤ b, we define φ(x) = f(x)− kg(x)
where k is a constant chosen such that φ(a) = φ(b)
i.e. f(a)− kg(a) = f(b)− kg(b)

i.e. k =
f(b)− f(a)

g(b)− g(a)
. [I]

Since, f, g are
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1. continuous on [a, b] and

2. derivable on (a, b),

φ is also

1. continuous on [a, b] and

2. derivable on (a, b).

Also, φ(a) = φ(b).
∴ φ satisfies all conditions of Rolle’s theorem.
Hence, there exists a point c ∈ (a, b) such that φ′(c) = 0.
∴ f ′(c)− kg′(c) = 0.

∴
f ′(c)

g′(c)
= k. (∵ g′(c) 6= 0)

∴
f ′(c)

g′(c)
=
f(b)− f(a)

g(b)− g(a)
using [I]

Examples:

1. Verify Cauchy’s mean value theorem for the functions f(x) = ex and
g(x) = e−x in [0, 1]. Show that c is the arithmetic mean of a and b.
Solution: f, g are continuous on [0, 1]. Also, f, g are differentiable on
(0, 1). Further
g′(x) = −e−x 6= 0 ∀x ∈ (0, 1).
Thus, all conditions of CMVT are satisfied.
So, there must exist c ∈ (a, b) such that

f ′(c)

g′(c)
=
f(b)− f(a)

g(b)− g(a)
.

∴
ec

−e−c
=

eb − ea

e−b − e−a
.

−e2c = −ea+b.
∴ 2c = a+ b.

∴ c =
a+ b

2
∈ (a, b).

Hence, CMVT is verified and c is the arithmetic mean of a and b.
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2. Find c of Cauchy’s mean value theorem for the functions cosx and sinx
in [0, π/2].
Solution: Let f(x) = cosx, g(x) = sinx.
Then both f, g are continuous on [0, π/2] and derivable on (0, π/2).
Also, g′(x) = cosx 6= 0, ∀x ∈ (0, π/2).
So all conditions of CMVT are satisfied.
By Cauchy’s mean value theorem there exists a real number c ∈ (0, π/2)
such that

f ′(c)

g′(c)
=
f(b)− f(a)

g(b)− g(a)
. [I]

∴
sin c

− cos c
=

cos(π/2)− cos 0

sin(π/2)− sin 0
∴ − tan c = −1
∴ tan c = 1
∴ c = π/4 ∈ (0, π/2).
So, c = π/4 is the point satisfying [I].

3. Verify CMVT for the functions f(x) =
1

x2
and g(x) =

1

x
on [a, b], a > 0.

Show that the point c of Cauchy’s mean value theorem is the harmonic

mean of a and b. Solution: Here f(x) =
1

x2
and g(x) =

1

x
.

Clearly, both f, g are continuous on [a, b] and derivable on (a, b), where
a > 0.
∴ By CMVT, ∃c ∈ (a, b) such that

f ′(c)

g′(c)
=
f(b)− f(a)

g(b)− g(a)
.

∴
−2/c3

−1/c2
=

1/b2 − 1/a2

1/b− 1/a

∴
2c2

c3
=

1

b
+

1

a

∴
2

c
=
a+ b

ab

∴ c =
2ab

a+ b
∈ (a, b).

Hence, CMVT is verified and c is the harmonic mean of a and b.
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4. Show that for 0 < x < π/2,

(a) sinx < x < tanx

(b)
2

π
<

sinx

x
< 1.

Solution:

(a) For 0 ≤ x < π/2, let f(x) = x− sinx, g(x) = tanx− x.
Then for all x ∈ (0, π/2), f ′(x) = 1 − cosx > 0 and g′(x) =
sec2 x− 1 > 0.
So, f, g are strictly increasing on [0, π/2).
Hence, for 0 < x, f(0) < f(x) and g(0) < g(x)
i.e. 0 < x− sinx and 0 < tanx− x
i.e. sinx < x and x < tanx
∴ sinx < x < tanx.

(b) For 0 < x ≤ π/2, let F (x) =
sinx

x
and F (0) = 1.

Then F is continuous on [0, π/2].

Also, on (0, π/2), F ′(x) =
x cosx− sinx

x2
< 0 since x < tanx by

(a).
Hence, F is strictly decreasing on [0, π/2) and so for x ∈ (0, π/2),
we have F (π/2) < F (x) < F (0).

Therefore,
2

π
<

sinx

x
< 1.

Exercises:

1. Verify Rolle’s theorem, if applicable, for the given function.

(a) f(x) = |x|, x ∈ [−1, 1]

(b) f(x) = x(x− 2)e−x, x ∈ [0, 2]

(c) f(x) = 9x3 − 4x, x ∈ [−2/3, 2/3]

(d) f(x) = cos2 x, x ∈ [−π/4, π/4].

2. Verify LMVT if applicable, for the given function.

(a) f(x) = ex, x ∈ [−1, 1]
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(b) f(x) = 3x2 − 5x+ 1, x ∈ [2, 5]

(c) f(x) = sinx+ cosx, x ∈ [0, 2π]

(d) f(x) =
√
x2 − 4, x ∈ [2, 3].

3. Verify CMVT if applicable, for the given function.

(a) f(x) = ex, g(x) =
x2

1 + x2
, x ∈ [−3, 3]

(b) f(x) = x2 + 2, g(x) = x3 − 1, x ∈ [1, 2].

4. Show that
x

1 + x
< log(1 + x) < x, x > 0.

5. Show that
b− a
1 + b2

< tan−1 b− tan−1 a <
b− a
1 + a2

, ∀ 0 < a < b.

6. Verify Cauchy’s mean value theorem for functions f(x) =
√
x and g(x) =

1√
x

in [a, b], a > 0. Show that the number c of CMVT is the geometric

mean of a and b.

7. Separate the intervals in which the polynomial 2x3 − 15x2 + 36x + 1 is
increasing or decreasing.

8. If
a0

n+ 1
+
a1
n

+ . . .+
an−1

2
+
an
1

= 0, show that the equation

a0x
n + a1x

n−1 + . . .+ an−1x+ an = 0 has a root in (0, 1).

9. If f(x) = x(x + 1)(x + 2)(x + 3), show that the equation f ′(x) = 0 has
three real roots.

10. Using f(x) = (4−x) log x, show that x log x = 4−x for some x ∈ (1, 4).

11. Find the points of local extrema, the intervals on which functions are
increasing or decreasing for

(a) f(x) = x+
1

x
, x 6= 0

(b) f(x) = x3, x ∈ [−1, 1]

(c) f(x) = x5 − 5x4 + 5x3 − 1, x ∈ R
(d) f(x) = xe−x, x ∈ (0, 2)
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(e) f(x) = x2 + 3x+ 5, x ∈ R

(f) f(x) =
x

x2 + 1
, x ∈ R.

12. Show that the equation tanx = 1 − x has at least one solution for
0 < x < 1.

13. Show that there is no k ∈ R such that the equation x3 + 12x + k = 0
has two distinct roots in [0, 2].

14. Let I be an interval and f : I → R be differentiable on I. Show that if
the derivative f ′ is never 0 on I, then either f ′(x) > 0 for all x ∈ I or
f ′(x) < 0 for all x ∈ I.

15. Let p be a polynomial of degree n ≥ 2. Show that between any two
distinct roots of p there lies a root of p′.

L’ Hospital’s Rules:

In calculus, we frequently come across limits of the form lim
x→a

f(x)

g(x)
. We note

that the limit exists and is equal to
limx→a f(x)

limx→a g(x)
provided lim

x→a
f(x), lim

x→a
g(x)

both exist and lim
x→a

g(x) 6= 0.

But if limx→a f(x) = 0 and limx→a g(x) = 0, then as x → a,
f(x)

g(x)
may tend

to a finite limit or to ∞ or to −∞ or it may oscillate.

In this case, we say that lim
x→a

f(x)

g(x)
is of indeterminate form

0

0
.

Similarly, if lim
x→a

f(x) = ∞ and lim
x→a

g(x) = ∞, then lim
x→a

f(x)

g(x)
is said to be of

the indeterminate form
∞
∞

.

We state below a collection of theorems called L’ Hospital’s rule which are

useful in evaluating limits of the form
0

0
and

∞
∞

. Other indeterminate forms

like 0 ·∞, 00, 1∞, ∞−∞ can be reduced either to
0

0
or
∞
∞

form by algebraic

manipulations and by taking logarithms or exponentials.



81

Theorem 10 : (L’ Hospital’s Rule I)
Suppose a < b and functions f, g are derivable on (a, b) and g′(x) 6= 0 ∀x ∈

(a, b). Suppose that lim
x→a+

f(x) = 0 = lim
x→a+

g(x) and lim
x→a+

f ′(x)

g′(x)
= L, then

lim
x→a+

f(x)

g(x)
= L.

Here, L can be a real number or ∞ or −∞.

Remarks:

1. L’ Hospital’s rule for
0

0
indeterminate form is also valid for left land

limits. There we replace (a, b) by (c, a) where c < a and x → a+ by
x→ a−.
Combining the versions of left hand limits and right hand limits, we ob-

tain L’ Hospital’s rule for (two sided) limits of
0

0
indeterminate form as

follows:
Let f, g be functions which are differentiable in some deleted neigh-
borhood of a where g′(x) 6= 0 and let lim

x→a
f(x) = 0 = lim

x→a
g(x) and

lim
x→a

f ′(x)

g′(x)
= L, then lim

x→a

f(x)

g(x)
= L.

2. L’ Hospital’s rule I is also valid if instead of considering limits as x→ a
where a is a real number, we consider limits as x→∞ or x→ −∞.

3. If lim
x→a+

f ′(x)

g′(x)
is also indeterminate of the form

0

0
, then it may be possible

to apply the above theorem again to conclude that if lim
x→a+

f ′′(x)

g′′(x)
exists,

then it is equal to lim
x→a+

f ′(x)

g′(x)
.

Theorem 11 : (L’ Hospital’s Rule II)
Suppose a < b and functions f, g are derivable on (a, b) and g′(x) 6= 0 ∀x ∈

(a, b). Suppose that lim
x→a+

f(x) = ±∞ = lim
x→a+

g(x) and lim
x→a+

f ′(x)

g′(x)
= L, then

lim
x→a+

f(x)

g(x)
= L.
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Remarks:

1. Above L’ Hospital’s rule can be stated for x→ a− or x→ a with suitable
modifications in the hypothesis of the theorem.

2. L’ Hospital’s rule II is also valid if instead of considering limits as x→ a
where a is a real number, we consider limits as x→∞ or x→ −∞.

3. If lim
x→a+

f ′(x)

g′(x)
is again indeterminate of the form

∞
∞

, then by applying

the above theorem again, we conclude that, if lim
x→a+

f ′′(x)

g′′(x)
exists, then it

is equal to lim
x→a+

f ′(x)

g′(x)
.

Examples:

1. Find lim
x→0

sinx

x
.

Solution: f(x) = sinx, g(x) = x are differentiable everywhere on the
real line and f ′(x) = cosx, g′(x) = 1.
Further, g′(x) 6= 0 for all x ∈ R.
lim
x→0

f(x) = 0 = lim
x→0

g(x)

and lim
x→0

f ′(x)

g′(x)
= lim

x→0
cosx = 1.

Therefore, by L’ Hospital’s rule I, we have

lim
x→0

sinx

x
= lim

x→0

f ′(x)

g′(x)
= 1.

2. Show that lim
x→∞

x2

e2x
= 0.

Solution: Note that lim
x→∞

x2

e2x
is of the indeterminate form

∞
∞

. Also,

f(x) = x2, g(x) = e2x satisfy all hypotheses of L’ Hospital’s rule II, so

lim
x→∞

x2

e2x
exists provided lim

x→∞

2x

2e2x
exists. and again by L’ Hospital’s

rule, this limit exists provided lim
x→∞

2

4e2x
exists.

Now lim
x→∞

2

4e2x
= 0 and hence lim

x→∞

x2

e2x
= 0.
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3. Evaluate lim
x→∞

2x2 + 5x+ 7

x2 − x+ 1
.

Solution: lim
x→∞

2x2 + 5x+ 7

x2 − x+ 1

(∞
∞

form
)

= lim
x→∞

4x+ 5

2x− 1

(∞
∞

form
)

= lim
x→∞

4

2
= 2.

4. Find lim
x→0

1− cosx

x2
.

Solution: Let f(x) = 1− cosx and g(x) = x2.
Both f, g are differentiable in every deleted neighborhood of 0 and g′(x) =
2x 6= 0 in that deleted neighborhood.
Also, lim

x→0
f(x) = 0 = lim

x→0
g(x).

So, we can apply L’ Hospital’s rule I,

lim
x→0

1− cosx

x2
= lim

x→0

sinx

2x

(
0

0
form

)
= lim

x→0

cosx

2
= 2.

Sometimes L’ Hospital’s rule does not help us to evaluate a given limit
as illustrated in the following example.

5. Find lim
x→∞

√
1 + x2

x
.

Solution: Here, f(x) =
√

1 + x2 and g(x) = x.
Note that, lim

x→∞
f(x) =∞ = lim

x→∞
g(x).

If we try to apply, L’ Hospital’s rule, we get a loop.

lim
x→∞

√
1 + x2

x
= lim

x→∞

(
2x

2
√
1+x2

)
1

= lim
x→∞

x√
1 + x2

.

= lim
x→∞

1(
2x

2
√
1+x2

) .

= lim
x→∞

√
1 + x2

x
.
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However, the limit can be found directly as,

lim
x→∞

√
1 + x2

x
= lim

x→∞

√
1 + x2

x2
= lim

x→∞

√
1 +

1

x2
= 1.

6. Find lim
x→∞

log x

x
.

Solution: Here f(x) = log x and g(x) = x are differentiable on (0,∞)
and g′(x) = 1 6= 0, ∀x ∈ (0,∞).

By L’ Hospital’s rule, we have lim
x→∞

log x

x
= lim

x→∞

(
1
x

)
1

= 0.

7. Find lim
x→0

ex − cosx− x
x sinx

.

Solution: lim
x→0

ex − cosx− x
x sinx

(
0

0
form

)
= lim

x→0

ex − cosx− x
x2

x

sinx

= lim
x→0

ex − cosx− x
x2

(
0

0
form

)
= lim

x→0

ex + sinx− 1

2x

(
0

0
form

)
= lim

x→0

ex + cosx

2
= 1.

Now, we see how to evaluate limits for other indeterminate forms such
as∞−∞, 0 ·∞, 1∞, 00, ∞0. Here, the first two forms can be converted

into
0

0
or
∞
∞

. For the remaining forms we need to use the continuity of

the logarithmic and exponential functions.

8. Evaluate lim
x→0

(
1

x
− 1

ex − 1

)
.

Solution: lim
x→0+

(
1

x
− 1

ex − 1

)
has indeterminate form ∞−∞.

lim
x→0

(
1

x
− 1

ex − 1

)
=
ex − 1− x
x(ex − 1)

(
0

0
form

)
=

ex − 1

ex − 1 + xex

(
0

0
form

)
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=
ex

2ex + xex

=
1

2
.

9. Evaluate lim
x→π/2

(secx− tanx).

Solution: lim
x→π/2

(secx− tanx) (∞−∞ form)

= lim
x→π/2

(
1

cosx
− sinx

cosx

)
= lim

x→π/2

(
1− sinx

cosx

) (
0

0
form

)
= lim

x→π/2

cosx

− sinx
= 0.

10. Evaluate lim
x→0+

x2 log x.

Solution: lim
x→0

x2 log x (0 · ∞ form)

= lim
x→0

log x

1/x2

(∞
∞

form
)

= lim
x→0

1/x

−2/x3

= lim
x→0

−x2

2
= 0.

11. Evaluate lim
x→2

(2− x) tan
(πx

4

)
.

Solution: lim
x→2

(2− x) tan
(πx

4

)
(0 · ∞ form)

= lim
x→2

2− x
cot
(
πx
4

) (
0

0
form

)
= lim

x→2

−1

−π
4 cosec2

(
πx
4

)
= lim

x→2

4

π
sin2

(πx
4

)
=

4

π
.

12. Evaluate lim
x→0+

xx (00 form)
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Solution: Put y = xx.
∴ log y = x log x → 0 as x→ 0+.
Hence, lim

x→0+
y = lim

x→0+
elog y

= e
lim
x→0+

log y
(using continuity of et)

= e0 = 1.
∴ lim
x→0+

xx = 1.

13. Evaluate lim
x→0+

(1 +mx)1/x (1∞ form)

Solution: Put y = (1 +mx)1/x.

∴ log y =
1

x
log(1 +mx).

lim
x→0+

log y = lim
x→0+

1

x
log(1 +mx) (0 · ∞ form)

= lim
x→0+

log(1 +mx)

x

= lim
x→0+

m

1 +mx
= m.

∴ lim
x→0+

y = lim
x→0+

elog y

= e
lim
x→0+

log y
= em.

∴ lim
x→0+

(1 +mx)1/x = em.

14. Evaluate lim
x→0+

xsinx (00 form)

Solution: Let y = xsinx.
∴ log y = sinx log x.
lim
x→0+

log y = lim
x→0+

sinx log x (0 · ∞ form)

= lim
x→0+

log x

cosec x

(∞
∞

form
)

= lim
x→0+

1/x

cosec x cotx

= lim
x→0+

sin2 x

x cosx

(
0

0
form

)
= lim

x→0+

2 sinx cosx

cosx− x sinx
= 0.
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∴ lim
x→0+

y = lim
x→0+

elog y

= e
lim
x→0+

log y

= e0 = 1.
∴ lim
x→0+

xsinx = 1.

15. Evaluate lim
x→0

(cosecx)1/ log x (∞0 form)

Solution: Let y = (cosecx)1/ log x.

∴ log y =
1

log x
log(cosecx).

∴ lim
x→0

log y = lim
x→0

log(cosecx)

log x

(∞
∞

form
)

= lim
x→0

−1
cosecxcosecx · cotx

1
x

= − lim
x→0

x cotx

= − lim
x→0

cosx · x

sinx
= −1 · 1 = −1.

∴ lim
x→0

y = lim
x→0

elog y

= e
lim
x→0

log y

= e−1 =
1

e
.

∴ lim
x→0

(cosecx)1/ log x =
1

e
.

16. Evaluate lim
x→0

(ax + x)1/x (1∞ form)

Solution: Let y = (ax + x)1/x.

∴ log y =
1

x
log(ax + x)

∴ lim
x→0

log y = lim
x→0

1

x
log(ax + x) (∞ · 0 form)

= lim
x→0

log(ax + x)

x

(
0

0
form

)
= lim

x→0

1
ax+x(ax log a+ 1)

1

= lim
x→0

ax log a+ 1

ax + x
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= log a+ 1.
∴ lim
x→0

y = lim
x→0

elog y

= e
lim
x→0

log y

= elog a+1

= elog a · e1 = a · e.
∴ lim
x→0

(ax + x)1/x = a · e.

Exercises:

1. Evaluate the following limits, if they exist.

(a) lim
x→∞

x2

e2x

(b) lim
x→0

e2x − cosx

x

(c) lim
x→0

tanx− x
x− sinx

(d) lim
x→0

1 + x

x

(e) lim
x→0

x

tanx

(f) lim
x→0

2x2 − 3x+ 1

x2 − x

(g) lim
x→0

ex − 1 + log(1− x)

tanx− x
(h) lim

x→∞
x

1
x

(i) lim
x→0+

tan 5x

tanx

(j) lim
x→0

ax − 1

bx − 1

(k) lim
x→∞

x sin

(
1

x

)
(l) lim

x→1
(1− x)

tanπx

2
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(m) lim
x→0

(
1

x
− cotx

)
(n) lim

x→0

(
1

x
− log(1 + x)

x2

)
(o) lim

x→0

(
1

sinx
− 1

x

)
(p) lim

x→0
(cosx)

1
x2

(q) lim
x→0

(
1

ex − 1
− 1

x

)
(r) lim

x→∞

(
1 +

3

x

)x
(s) lim

x→1

(
x2 − 1

)log x
(t) lim

x→π/4
(tanx)tan 2x

(u) lim
x→a

(x− a)x−a

(v) lim
x→π/2

(secx)cotx

(w) lim
x→0+

(
1

x

)2 sinx

(x) lim
x→∞

(ex + x)
1
x

2. Show that

(a) lim
x→a

xn − an

x− a
= nan−1.

(b) lim
x→a

ax − bx

x
= log a− log b for a, b > 0.

(c) lim
x→0

(
ax + bx

2

) 1
x

=
√
ab.

(d) lim
x→∞

(1 +mx)
1
x = e for m > 0.
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3. Find the value of a, b such that

lim
x→0

x(1 + a cosx)− b sinx

x3
= 1.

Successive Differentiation:
Derivatives of order greater than one are obtained by a natural extension of the
differentiation process, called successive differentiation. If the derivative f ′(x)
of a function f exists at every point x in an interval I containing a point c,
then we can consider existence of the derivative of the function f ′ at the point
c. In case f ′ has a derivative at the point c, we refer to the resulting number
as the second derivative of f at c, and we denote this number by f ′′(c) or by
f (2)(c). In similar fashion, we define the third derivative f ′′′(x) = f (3)(c), . . . ,
and the nth derivative f (n)(c), whenever these derivatives exist. Note that the
existence of the nth derivative presumes the existence of the (n−1)th derivative
in an interval containing c.
If y = f(x), we denote the nth derivative of f at x as f (n)(x) or yn(x) or

Dnf(x) or
dny

dxn
.

Examples:

1. If y = sin−1 x, prove that (1− x2)y2 − xy1 = 0.
Solution: y = sin−1 x.

∴ y1 =
1√

1− x2

∴ y21 =
1

1− x2
∴ (1− x2)y21 − 1 = 0.
Differentiating both sides w.r.t. x, we get

(1− x2)2y1y2 + y21(−2x) = 0

∴ (1− x2)y2 − xy1 = 0

.

2. If y = log(log x), prove that xy2 + y1 + xy21 = 0.
Solution: y = log(log x).
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∴ y1 =
1

log x

1

x

∴ xy1 =
1

log x
Differentiating both sides w.r.t. x, we get

xy2 + y1 = − 1

(log x)2
1

x

= − x

x2(log x)2

= −xy21.
∴ xy2 + y1 + xy21 = 0.

The nth derivative of some standard functions:

1. If y = (ax+ b)m, m ∈ R,
then y1 = ma(ax+ b)m−1,
y2 = m(m− 1)a2(ax+ b)m−2,
y3 = m(m− 1)(m− 2)a3(ax+ b)m−3 and
in general, yn = m(m− 1)(m− 2) . . . (m− n+ 1)an(ax+ b)m−n.
If m is a positive integer, then

yn =
m!

(m− n)!
an(ax+ b)m−n if n < m

= m!am if n = m
= 0 if n > m.

2. If y =
1

ax+ b
.

Put m = −1 in (1), we get
yn = (−1)(−2) . . . (−n)an(ax+ b)−1−n

=
(−1)nn!an

(ax+ b)n+1
.

3. If y = log(ax+ b).

We have, y1 =
1

ax+ b
· a.

By above result (2), we have

yn =
(−1)n−1(n− 1)!an

(ax+ b)n
.

4. If y = amx.
We have y1 = mamx log a
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y2 = m2amx(log a)2

y3 = m3amx(log a)3.
In general,
yn = mnamx(log a)n.

5. If y = emx.
Put a = e in (4), we get
yn = mnemx(log e)n

= mnemx.

6. If y = sin(ax+ b), then we have
y1 = a cos(ax+ b) = a sin(ax+ b+ π/2)
y2 = a2 cos(ax+ b+ π/2) = a2 sin(ax+ b+ 2π/2)
y3 = a3 cos(ax+ b+ 2π/2) = a3 sin(ax+ b+ 3π/2)
In general,
yn = an sin(ax+ b+ nπ/2).

7. Similar to (6), if y = cos(ax+ b), then
yn = an cos(ax+ b+ nπ/2).

8. If y = eax sin(bx+ c), we have
y1 = aeax sin(bx+ c) + beax cos(bx+ c).
Put a = r cos θ, b = r sin θ

where r =
√
a2 + b2, θ = tan−1

b

a
.

∴ y1 = reax cos θ sin(bx+ c) + reax sin θ cos(bx+ c)
= reax sin(bx+ c+ θ)

∴ y2 = r2eax sin(bx+ c+ 2θ)
In general,
yn = rneax sin(bx+ c+ nθ).

9. Similarly, if y = eax cos(bx+ c), then
yn = rneax cos(bx+ c+ nθ)

where r =
√
a2 + b2, θ = tan−1

b

a
.

Examples:
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1. If y =
16x+ 18

2x2 + 5x+ 3
, find yn.

Solution: Here y =
16x+ 18

2x2 + 5x+ 3
=

16x+ 18

(x+ 1)(2x+ 3)

∴ y =
2

x+ 1
+

12

2x+ 3

∴ yn =
2(−1)nn!1n

(x+ 1)n+1
+

12(−1)nn!2n

(2x+ 3)n+1
.

2. If y = e2x cos2 x sinx, find the nth derivative of y.
Solution: We have y = e2x cos2 x sinx

= e2x
1

2
(1 + cos 2x) sinx

= e2x
(

1

2
sinx+

1

2
cos 2x sinx

)
= e2x

(
1

2
sinx+

1

4
sin 3x− 1

4
sinx

)
= e2x

(
1

4
sinx+

1

4
sin 3x

)
∴ y =

1

4
e2x sinx+

1

4
e2x sin 3x.

∴ yn =
1

4

√
5
n
e2x sin

(
x+ n tan−1

1

2

)
+

1

4

√
13
n
e2x sin

(
3x+ n tan−1

3

2

)
.

Theorem 12 : (Leibnitz’s Theorem)
If y = uv, where u and v are functions of x possessing derivatives of nth order,
then

yn = (uv)n

=n C0unv +n C1un−1v1 + . . .+n Cr−1un−r+1vr−1

+n Crun−rvr + . . .+n Cnuvn [I]

where nCr =
n!

(n− r)!r!
.

Proof: We prove the theorem using mathematical induction.
Step 1: y1 = (uv)1

= u1v + uv1
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= 1C0u1v + 1C1uv1
Thus, the result is true for n = 1.

Step 2: Assume that the result is true for n = m. Therefore

ym = (uv)m

=m C0umv +m C1um−1v1 + . . .+m Cr−1um−r+1vr−1

+m Crum−rvr + . . .+m Cm−1u1vm−1 +m Cmuvm.

Differentiating both sides, we get

y(m+1) = (uv)m+1

=m C0um+1v +m C0umv1 +m C1umv1 +m C1um−1v2

+ . . .+m Cr−1um−r+2vr−1 +m Cr−1um−r+1vr

+m Crum−r+1vr +m Crum−rvr+1

+ . . .+m Cmu1vm +m Cmuvm+1

=m C0um+1v + (mC0 +m C1)umv1 + (mC1 +m C1)um−1v2

+ . . .+ (mCr−1 +m Cr)um−rvr + . . .+m Cmuvm+1.

We have the results,

mCr−1 +m Cr =m+1 Cr and mCm =m+1 Cm+1,
mC0 =m+1 C0.

Therefore

ym+1 = (uv)m+1

=m+1 C0um+1v +m+1 C1umv1 +m+1 C2um−1v2

+ . . .+m+1 Crum−r+1vr + . . .+m+1 Cm+1uvm+1.

Therefore, the result is true for n = m+ 1.
Hence, by the principle of mathematical induction the theorem is true for all
positive integers n.

Examples:

1. If y = (sin−1 x)2, prove that
(1− x2)yn+2 − (2n+ 1)xyn+1 − n2yn = 0.
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Solution: We have y = (sin−1 x)2.
Differentiating both sides w.r.t. x, we get

y1 = 2 sin−1 x · 1√
1− x2

∴ y1
√

1− x2 = 2 sin−1 x.
Squaring and simplifying, we get
(1− x2)y21 − 4y = 0.
Differentiating once again, we get
(1− x2)2y1y2 − 2xy21 − 4y1 = 0
∴ 2y1

[
(1− x2)y2 − xy1 − 2

]
= 0

∴ (1− x2)y2 − xy1 − 2 = 0 [I]
Differentiating [I] n times using Leibnitz’s theorem, we get[

nC0(1− x2)yn+2 +n C1(−2x)yn+1 +n C2(−2)yn
]

− [nC0xyn+1 +n C1yn] = 0

∴ (1− x2)yn+2 − 2nxyn+1 − n(n− 1)yn − xyn+1 − nyn = 0
∴ (1− x2)yn+2 − (2n+ 1)xyn+1 − n2yn = 0.

2. If y
1
m + y

−1
m = 2x, show that

(x2 − 1)yn+2 + (2n+ 1)xyn+1 + (n2 −m2)yn = 0.

Solution: We have y
1
m +

1

y
1
m

= 2x.

Put y
1
m = t.

∴ t+
1

t
= 2x.

∴ t2 − 2xt + 1 = 0 which is a quadratic equation in t. Solving it for t,
we get
t = x±

√
x2 − 1.

We ignore the negative sign.

∴ t = x+
√
x2 − 1 = y

1
m

∴ y = (x+
√
x2 − 1)m [I]

Differentiating [I] w.r.t. to x, we get

y1 = m(x+
√
x2 − 1)m−1

(
1 + x√

x2−1

)
∴ y1 =

m(x+
√
x2 − 1)m√

x2 − 1

∴
√
x2 − 1y1 = my



96

Differentiating once again, we get√
x2 − 1y2 +

x√
x2 − 1

y1 = my1

= m my√
x2−1

∴ (x2 − 1)y2 + xy1 −m2y = 0 [II]
Differentiating [II] n times using Leibnitz’s theorem, we get
(x2 − 1)yn+2 + n(2x)yn+1 + n(n− 1)yn + xyn+1 + nyn −m2yn = 0
∴ (x2 − 1)yn+2 + (2n+ 1)xyn+1 + (n2 −m2)yn = 0.

3. If x = tan(log y), prove that
(1 + x2)yn+1 + (2nx− 1)yn + n(n− 1)yn−1 = 0.
Solution: We have x = tan(log y)
∴ log y = tan−1 x
∴ y = etan

−1 x [I]
Differentiating [I] w.r.t. x, we get

y1 = etan
−1 x · 1

1 + x2

∴ (1 + x2)y1 = etan
−1 x = y

∴ (1 + x2)y1 − y = 0 [II]
Differentiating [II] n times using Leibnitz’s theorem, we get
(1 + x2)yn+1 + n(2x)yn + n(n− 1)yn−1 − yn = 0
∴ (1 + x2)yn+1 + (2nx− 1)yn + n(n− 1)yn−1 = 0

Exercises:

1. Find the nth derivative of

(a) xnex

(b) x3 cosx

2. Let f(x) = x sin

(
1

x

)
for x 6= 0 and f(0) = 0. Show that f is continuous

at 0 but f ′(0) does not exist.

3. Let f(x) = x2 sin

(
1

x

)
for x 6= 0 and f(0) = 0. Show that f ′(0) exists

but f ′ is not continuous at 0.

4. Prove that
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(a)
dn

dxn

(
1

a2 − x2

)
=
n!

2a

[
(−1)n+1

(a− x)n+1
+

(−1)n

(a+ x)n+1

]
.

(b) If y = sin2 x sin 2x, then

yn =
1

4

[
2n+1 sin(2x+ nπ/2)− 4n−1 sin(4x+ nπ/2)

]
.

(c) If y = eax cosx sinx then

yn =
1

2
eax(a2 + 4)n/2 sin(2x+ n tan−1

(
2

a

)
).

5. If y = ea sin
−1 x cosx sinx then prove that

(1− x2)yn+2 − (2n+ 1)xyn+1 − (n2 + a2)yn = 0.

6. If y = sin(m sin−1 x), then show that
(1− x2)yn+2 − (2n+ 1)xyn+1 + (n2 −m2)yn = 0.

7. If y = (x2 − 1)n, prove that
(x2 − 1)yn+2 + 2xyn+1 − n(n+ 1)yn = 0.

8. If y = log(x+
√

1 + x2), prove that

(a) (1 + x2)y2 + xy1 = 0

(b) (1 + x2)yn+2 + (2n+ 1)xyn+1 + n2yn = 0

(c) yn+2(0) = −n2yn(0).

Taylor’s Theorem:
Taylor’s theorem can be regarded as an extension of the mean value theorem
to higher order derivatives. Whereas the mean value theorem relates the
difference of values of a function and its first derivative, Taylor’s theorem
provides a relation between the difference of values of the function and its
higher order derivatives.
It is useful to be able to approximate a function by an infinite series. Taylor’s
theorem can be used to represent a function as an infinite series.

Theorem 13 : (Taylor’s Theorem with Lagrange’s form of remain-
der)
Let n ∈ N, let I = [a, b] and let f : I → R be such that f and its derivatives
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f ′, f ′′, . . . f (n) are continuous on I and that f (n+1) exists on (a, b). If x0 ∈ I,
then for any x ∈ I, there exists a point c between x and x0 such that

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2

+ . . .+
f (n)(x0)

n!
(x− x0)n +

f (n+1)(c)

(n+ 1)!
(x− x0)n+1.

Note: We may write the conclusion of Taylor’s theorem as
f(x) = Pn(x) +Rn(x) where

Pn(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2 + . . .+

f (n)(x0)

n!
(x− x0)n is

the Taylor polynomial for f at x0 and Rn(x) =
f (n+1)(c)

(n+ 1)!
(x−x0)n+1 for some

point c between x and x0, is the Lagrange’s form of remainder of order n.
Suppose f possesses derivatives of all orders on I. If Rn(x)→ 0 as n→∞ for
all x in I, then we say that the Taylor series generated by f at x0 converges
to f on I and we write

f(x) =
∞∑
k=0

f (k)(x0)

k!
(x− x0)k.

This series is known as Taylor’s series expansion of f at x0.

With x0 = a and x = a+h, we have the following version of Taylor’s theorem.

Theorem 14 : (Taylor’s Theorem - Second form)
Let f be a function defined on [a, a+ h] such that

1. the nth derivative f (n) is continuous on [a, a+ h]

2. the (n+ 1)th derivative f (n+1) exists on (a, a+ h).

Then there exists a point c in (a, a+ h) such that

f(a+ h) = f(a) + f ′(a)h+
f ′′(a)

2!
h2 + . . .+

f (n)(a)

n!
hn +

f (n+1)(c)

(n+ 1)!
hn+1.

We have another form of Taylor’s theorem known as Maclaurin’s theorem.
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Theorem 15 : (Maclaurin’s Theorem)
Let f be a function defined on [0, x] such that

1. the nth derivative f (n) is continuous on [0, x]

2. the (n+ 1)th derivative f (n+1) exists on (0, x).

Then there exists at least one real number c in (0, x) such that

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + . . .+

f (n)(0)

n!
xn +Rn(x)

where Rn(x) =
f (n+1)(c)

(n+ 1)!
xn+1 is called the Lagrange’s form of remainder.

Note: Suppose f possesses derivatives of all orders on I. If Rn(x) → 0 as
n → ∞ for all x in I, then the Maclaurin series generated by f converges to
f and we write

f(x) =
∞∑
k=0

f (k)(0)

k!
xk.

This series is known as Maclaurin’s series expansion of f .

We are not proving any of these theorems. Assuming their validity we solve
examples.

Maclaurin’s series expansions of some basic functions:

1. Expansion of ex

Let f(x) = ex ∴ f(0) = e0 = 1
f ′(x) = ex ∴ f ′(0) = 1
f ′′(x) = ex ∴ f ′′(0) = 1
...
f (n)(x) = ex ∴ f (n)(0) = 1
By Maclaurin’s theorem, we have
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f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + . . .+

f (n)(0)

n!
xn + . . .

f(x) = ex = 1 + x+
x2

2!
+
x3

3!
+ . . .+

xn

n!
+ . . .

2. Expansion of sinx
Let f(x) = sinx ∴ f(0) = 0
f ′(x) = cosx ∴ f ′(0) = 1
f ′′(x) = − sinx ∴ f ′′(0) = 0
f (3)(x) = − cosx ∴ f (3)(0) = −1
f (4)(x) = sinx ∴ f (4)(0) = 0
...
By Maclaurin’s theorem, we have

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + . . .+

f (n)(0)

n!
xn + . . .

f(x) = sinx = x− x3

3!
+
x5

5!
− x7

7!
+ . . .

3. Expansion of cosx
Let f(x) = cosx ∴ f(0) = 1
f ′(x) = − sinx ∴ f ′(0) = 0
f ′′(x) = − cosx ∴ f ′′(0) = −1
f (3)(x) = sinx ∴ f (3)(0) = 0
f (4)(x) = cosx ∴ f (4)(0) = 1
...
By Maclaurin’s theorem, we have

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + . . .+

f (n)(0)

n!
xn + . . .

f(x) = cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ . . .

4. Expansion of log(1 + x)
Let f(x) = log(1 + x) ∴ f(0) = log 1 = 0

f ′(x) =
1

1 + x
∴ f ′(0) = 1

f ′′(x) =
−1

(1 + x)2
∴ f ′′(0) = −1
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f (3)(x) =
2

(1 + x)3
∴ f (3)(0) = 2

f (4)(x) =
−6

(1 + x)4
∴ f (4)(0) = −6

...
By Maclaurin’s theorem, we have

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + . . .+

f (n)(0)

n!
xn + . . .

f(x) = log(1 + x) = x− x2

2!
+

2x3

3!
− 6x4

4!
+ . . .

= x− x2

2
+
x3

3
− x4

4
+ . . .

Examples:

1. Obtain Maclaurin’s series expansion of tanx.
Solution: Let y = f(x) = tanx ∴ y(0) = 0
f ′(x) = sec2 x = 1 + tan2 x
∴ y1 = 1 + y2 ∴ y1(0) = 1
y2 = 2yy1 ∴ y2(0) = 0
y3 = 2y21 + 2yy2 ∴ y3(0) = 2
y4 = 4y1y2 + 2y1y2 + 2yy3 ∴ y4(0) = 0
y5 = 8y1y3 + 6y22 + 2yy4 ∴ y5(0) = 16
...
By Maclaurin’s theorem, we have

f(x) = y(0) + y1(0)x+
y2(0)

2!
x2 + . . .+

y(n)(0)

n!
xn + . . .

f(x) = tanx = x+
2x3

3!
+

16x5

5!
+ . . .

= x+
1

3
x3 +

2

15
x5 + . . .

2. Verify the Taylor’s series expansion

tan−1 x = x− x3

3
+
x5

5
− x7

7
+ . . .
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Hence find the value of
π

4
as an infinite series.

Solution: Here y = f(x) = tan−1 x ∴ y(0) = 0.

y1 = f ′(x) =
1

1 + x2
∴ y1(0) = 1.

Now (1 + x2)y1 = 1.
Differentiating n times using Leibnitz theorem this gives

(1 + x2)yn+1 + 2nxyn + n(n− 1)yn−1 = 0.

Hence at x = 0,

yn+1(0) = −n(n− 1)yn−1(0).

Thus,
y2m(0) = −(2m− 1)(2m− 2)y2m−2(0) (1)

and
y2m+1(0) = −(2m)(2m− 1)y2m−1(0) (2).

Since y0(0) = y(0) = 0, by induction (1) shows that y2m(0) = 0 for all
m.
Since y1(0) = 1, (2) gives successively y3(0) = −2, y5(0) = 24, y7(0) =
−720 and so on.
By Maclaurin’s series, we have

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + . . .+

f (n)(0)

n!
xn + . . .

f(x) = tan−1 x = x− 2x3

3!
+

24x5

5!
− 720x7

7!
+ . . .

= x− x3

3
+
x5

5
− x7

7
+ . . .

Putting x = 1, we have

tan−1 1 = 1− 1

3
+

1

5
− 1

7
+ . . .

∴
π

4
= 1− 1

3
+

1

5
− 1

7
+ . . ..

3. Assuming the validity of expansion prove that

ex cosx = 1 + x− x3

3
− x4

4
− x5

5
− . . .
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Solution: Let f(x) = ex cosx ∴ f(0) = 1
f (n)(x) = 2n/2ex cos

(
x+ nπ

4

)
∴ f ′(0) =

√
2 cos

(
π
4

)
=
√

2
(

1√
2

)
= 1

f ′′(0) = 2 cos
(
π
2

)
= 0

f (3)(0) = 2
√

2 cos
(
3π
4

)
= 2
√

2
(
−1√
2

)
= −2

f (4)(0) = 4 cosπ = −4
By Maclaurin’s series expansion, we have

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + . . .+

f (n)(0)

n!
xn + . . .

f(x) = ex cosx = 1 + x− x3

3
− x4

6
+ . . .

4. Find series expansion of log

√
1 + x

1− x
.

Solution: We have log

√
1 + x

1− x
=

1

2
[log(1 + x)− log(1− x)].

log(1 + x) = x− x2

2
+
x3

3
− x4

4
+ . . . and

log(1− x) = −x− x2

2
− x3

3
− x4

4
+ . . .

Thus, log

√
1 + x

1− x
=

1

2
[log(1 + x)− log(1− x)]

=
1

2

[(
x− x2

2
+
x3

3
− x4

4
+ . . .

)
−
(
−x− x2

2
− x3

3
− x4

4
+ . . .

)]
=

1

2

[
2x+

2x3

3
+

2x5

5
+

2x7

7
+ . . .

]
= x+

x3

3
+
x5

5
+
x7

7
+ . . .

5. Use Taylor’s theorem to express the polynomial 2x3 + 7x2 + x − 6 in
powers of (x− 2).
Solution: Let f(x) = 2x3 + 7x2 + x− 6 ∴ f(2) = 40
f ′(x) = 6x2 + 14x+ 1 ∴ f ′(2) = 53
f ′′(x) = 12x+ 14 ∴ f ′′(2) = 38
f (3)(x) = 12 ∴ f (3)(2) = 12.
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Hence f (3) is a constant function. So f (4)(x) ≡ 0, for n ≥ 4.
By Taylor’s theorem,

f(x) = f(2) + f ′(2)(x− 2) +
f ′′(2)

2!
(x− 2)2 +

f (3)(2)

3!
(x− 2)3 + . . .

= 40 + 53(x− 2) + 19(x− 2)2 + 2(x− 2)3.

6. Expand sinx in ascending powers of
(
x− π

2

)
.

Solution: Let f(x) = sinx ∴ f(π/2) = sin(π/2) = 1
f ′(x) = cosx ∴ f ′(π/2) = 0
f ′′(x) = − sinx ∴ f ′′(π/2) = −1
f (3)(x) = − cosx ∴ f (3)(π/2) = 0
f (4)(x) = sinx ∴ f (4)(π/2) = 1
...
Using Taylor’s theorem, we have

f(x) = f(π/2)+f ′(π/2)(x−π/2)+
f ′′(π/2)

2!
(x−π/2)2+

f (3)(π/2)

3!
(x−π/2)3+. . .

= 1− 1

2!
(x− π/2)2 +

1

4!
(x− π/2)4 + . . .

Exercises:

1. Expand tanx in powers of
(
x− π

4

)
.

2. Expand 5 + x2 − 4x4 + 3x7 in powers of (x− 1).

3. Find series expansion of sin−1 x.

4. Use Taylor’s theorem to expand the function
log(1 + x)

1 + x
in ascending

powers of x upto first 4 terms.

5. Use Maclaurin’s series to expand the function log(1 + sinx).

6. Verify the Maclaurin’s series expansion

sinhx = x+
x3

3!
+
x5

5!
+ . . .
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7. Prove the Maclaurin’s series expansion

esinx = 1 + x+
x2

2
− x4

8
+ . . .

8. Expand ex in powers of (x− 1).

9. Find the Taylor’s series generated by f(x) = 2x at x0 = 1.

10. Find series expansion of (1 + x)n on [0, x].


