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Chapter 1

Propositional Logic

Introduction

Logic is the basis of all mathematical reasoning. It has practical applications

in areas of computer science as well as to many other fields of study. In

mathematics, we must understand what makes up a correct mathematical

argument, that is, a proof. Once we prove that a mathematical statement is

true, we call it a theorem. A collection of theorems on a topic organize what

we know about this topic. To learn a mathematical topic, a person needs to

actively construct mathematical arguments on this topic. Moreover, knowing

the proof of a theorem often makes it possible to modify the result to fit new

situations. Everyone knows that proofs are important throughout mathe-

matics. The rules of logic give precise meaning to mathematical statements.

These rules are used to distinguish between valid and invalid mathematical

arguments. In this chapter, we will explain what makes up a correct math-

ematical argument and introduce tools to construct these arguments. These

basic tools will help us to develop different proof methods that will enable

us to prove many different types of results in the later chapters.

1
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1.1 Basic Concepts in Logic

Our discussion begins with an introduction to the basic building blocks of

logic viz., propositions.

Definition 1.1. A proposition is a declarative sentence (that is, a sentence

that declares a fact) that is either true or false, but not both.

All the following declarative sentences are propositions.

1. New Delhi, is the capital of India.

2. 2 + 1 = 3.

3. 2 + 1 = 2.

Here propositions 1 and 2 are true, whereas 3 is false.

Some sentences that are not propositions are:

1. How are you?

2. Read this carefully.

3. x+ 1 = 2.

4. x+ y = z.

Sentences 1 and 2 are not propositions because they are not declarative

sentences. Sentences 3 and 4 are not propositions because they are neither

true nor false. Note that each of the sentences 3 and 4 can be turned into a

proposition if we assign values to the variables.

We use letters to denote propositional variables (or statement variables),

that is, variables that represent propositions, just as letters are used to denote

numerical variables. The conventional letters used for propositional variables

are p, q, r, s, . . .. The truth value of a proposition is true, denoted by T, if it

is a true proposition, and the truth value of a proposition is false, denoted

by F, if it is a false proposition.

Definition 1.2. The area of logic that deals with propositions is called the

propositional calculus or propositional logic.
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p ¬p
T F

F T

Table 1.1: Negation

Definition 1.3. Compound propositions are new propositions formed

from existing propositions using logical operators.

Definition 1.4. Let p be a proposition. The negation of p, denoted by ¬p,

is the statement “It is not the case that p.” The proposition ¬p is read “not

p.” The truth value of the negation of p,¬p, is the opposite of the truth value

of p.

The negation operator constructs a new proposition from a single existing

proposition. We will now introduce the logical operators that are used to

form new propositions from two or more existing propositions. These logical

operators are also called connectives.

Definition 1.5. Let p and q be propositions. The conjunction of p and q,

denoted by p ∧ q, is the proposition “p and q.” The conjunction p ∧ q is true

when both p and q are true and is false otherwise.

p q p ∧ q

T T T

T F F

F T F

F F F

Table 1.2: p ∧ q

p q p ∨ q

T T T

T F T

F T T

F F F

Table 1.3: p ∨ q

Table 1.2 displays the truth table of p ∧ q. This table has a row for each

of the four possible combinations of truth values of p and q. The four rows
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correspond to the pairs of truth values TT, TF, FT, and FF, where the first

truth value in the pair is the truth value of p and the second truth value is

the truth value of q. Note that in logic the word “but” sometimes is used

instead of “and” in a conjunction. For example, the statement “The sun is

shining, but it is raining” is another way of saying “The sun is shining and

it is raining.”

Definition 1.6. Let p and q be propositions. The disjunction of p and q,

denoted by p ∨ q, is the proposition “p or q.” The disjunction p ∨ q is false

when both p and q are false and is true otherwise.

Table 1.3 displays the truth table for p∨q. The use of the connective “or”

in a disjunction corresponds to one of the two ways the word “or” is used

in English, namely, in an inclusive way. Thus, a disjunction is true when at

least one of the two propositions in it is true. Sometimes, we use “or” in an

exclusive sense. When the “exclusive or” is used to connect the propositions

p and q, the proposition “p or q (but not both)” is obtained.

Definition 1.7. Let p and q be propositions. The exclusive or of p and q,

denoted by p⊕ q, is the proposition that is true when exactly one of p and q

is true and is false otherwise.

The truth table for the exclusive or of two propositions is displayed in

Table 1.4.

Definition 1.8. Let p and q be propositions. The conditional statement

p → q is the proposition “if p, then q.” The conditional statement p → q is

false when p is true and q is false, and true otherwise.

In the conditional statement p → q, p is called the hypothesis (or an-

tecedent or premise) and q is called the conclusion (or consequence). The

statement p → q is called a conditional statement because p → q asserts
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p q p⊕ q

T T F

T F T

F T T

F F F

Table 1.4: Exclusive or

p q p→ q

T T T

T F F

F T T

F F T

Table 1.5: Conditional Statement

that q is true on the condition that p holds. A conditional statement is also

called an implication. The truth table for the conditional statement p → q

is shown in Table 1.5. Note that the statement p → q is true when both

p and q are true and when p is false (no matter what truth value q has).

Because conditional statements play such an essential role in mathematical

reasoning, a variety of terminology is used to express p → q. A useful way

to understand the truth value of a conditional statement is to think of an

obligation or a contract. For example, a pledge many politicians make when

running for office is “If I am elected, then I will lower taxes.” It is only when

the politician is elected but does not lower taxes that voters can say that the

politician has broken the campaign pledge. This scenario corresponds to the

case when p is true but q is false in p→ q.

You will encounter most if not all of the following ways to express this

conditional statement:
“if p, then q” “p implies q”

“if p, q” “p only if q”

“p is sufficient for q” “a sufficient condition for q is p”

“q if p” “q whenever p”

“q when p” “q is necessary for p”

“q unless ¬p” “q follows from p”

“a necessary condition for p is q”.

Example 1.1. Let p be the statement “Nilesh learns discrete mathematics”
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and q the statement “Nilesh will find a good job.” Express the statement

p→ q as a statement in English.

Solution: From the definition of conditional statements, we see that when p

is the statement “Nilesh learns discrete mathematics” and q is the statement

“Nilesh will find a good job,” p → q represents the statement “If Nilesh

learns discrete mathematics, then he will find a good job.”

There are many other ways to express this conditional statement in En-

glish. Among the most natural of these are:

“Nilesh will find a good job when he learns discrete mathematics.”

“For Nilesh to get a good job, it is sufficient for him to learn discrete math-

ematics.” and

“Nilesh will find a good job unless he does not learn discrete mathematics.”

and so on.

1.1.1 Converse, Contrapositive, and Inverse

We can form some new conditional statements starting with a conditional

statement p→ q. In particular, there are three related conditional statements

that occur so often that they have special names.

Definition 1.9. The proposition q → p is called the converse of p → q.

The contrapositive of p → q is the proposition ¬q → ¬p. The proposition

¬p→ ¬q is called the inverse of p→ q.

From the truth table we can easily check that the truth values of p → q

and ¬q → ¬p are same. This leads us to the next definition.

Definition 1.10. When two compound propositions always have the same

truth value we call them equivalent.

The converse and the inverse of a conditional statement are also equiva-

lent.
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Example 1.2. What are the contrapositive, the converse, and the inverse of

the conditional statement “The home team wins whenever it is raining.”

Solution: Because “q whenever p” is one of the ways to express the con-

ditional statement p → q, the original statement can be rewritten as “If it

is raining, then the home team wins.” Consequently, the contrapositive of

this conditional statement is “If the home team does not win, then it is not

raining.” The converse is “If the home team wins, then it is raining.” The

inverse is “If it is not raining, then the home team does not win.” Only the

contrapositive is equivalent to the original statement.

We now introduce another way to combine propositions that expresses

that two propositions have the same truth value.

Definition 1.11. Let p and q be propositions. The biconditional state-

ment p↔ q is the proposition “p if and only if q.” The biconditional state-

ment p ↔ q is true when p and q have the same truth values, and is false

otherwise. Biconditional statements are also called bi-implications.

The truth table for p ↔ q is shown in Table 1.6. There are some other

common ways to express p ↔ q : “p is necessary and sufficient for q” “if p

then q, and conversely” “p iff q.” The last way of expressing the bicondi-

tional statement p↔ q uses the abbreviation “iff” for “if and only if.” Note

that p ↔ q has exactly the same truth value as (p → q) ∧ (q → p). We

p q p↔ q

T T T

T F F

F T F

F F T

Table 1.6: Biconditional Statement
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have now introduced four important logical connectives–conjunctions, dis-

junctions, conditional statements, and biconditional statements–as well as

negations. We can use these connectives to build up complicated compound

propositions involving any number of propositional variables. We can use

truth tables to determine the truth values of these compound propositions.

We use a separate column to find the truth value of each compound expres-

sion that occurs in the compound proposition as it is built up. The truth

values of the compound proposition for each combination of truth values of

the propositional variables in it is found in the final column of the table.

Example 1.3. Construct the truth table of the compound proposition

(p ∨ ¬q)→ (p ∧ q).
Solution: Because this truth table involves two propositional variables p

and q, there are four rows in this truth table, one for each of the pairs of

truth values TT, TF, FT, and FF. The first two columns are used for the

truth values of p and q, respectively. In the third column we find the truth

value of ¬q, needed to find the truth value of p ∨ ¬q, found in the fourth

column. The fifth column gives the truth value of p ∧ q. Finally, the truth

value of (p ∨ ¬q)→ (p ∧ q) is found in the last column. The resulting truth

table is shown in Table 1.7.

p q ¬q p ∨ ¬q p ∧ q (p ∨ ¬q)→ (p ∧ q)

T T F T T T

T F T T F F

F T F F F T

F F T T F F

Table 1.7: The Truth table.
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1.1.2 Precedence of Logical Operators

We can construct compound propositions using the negation operator and

the logical operators defined so far. We will generally use parentheses to

specify the order in which logical operators in a compound proposition are

to be applied. For instance, (p∨ q)∧ (¬r) is the conjunction of p∨ q and ¬r.
However, to reduce the number of parentheses, we specify that the negation

operator is applied before all other logical operators. This means that ¬p∧ q
is the conjunction of ¬p and q, namely, (¬p) ∧ q, not the negation of the

conjunction of p and q, namely ¬(p∧q). Another general rule of precedence is

that the conjunction operator takes precedence over the disjunction operator,

so that p ∨ q ∧ r means p ∨ (q ∧ r) rather than (p ∨ q) ∧ r. Because this rule

may be difficult to remember, we will continue to use parentheses so that the

order of the disjunction and conjunction operators is clear.

Operator Precedence

¬ 1

∧ 2

∨ 3

→ 4

↔ 5

Table 1.8: Precedence of Logical Operators.

Most of the theorems are in the form of conditional statements. To prove

theorems sometimes we use contrapositive statement, which is equivalent to

the conditional statement. We will use this equivalence in Chapter 3. In the

next section we will learn the equivalence of logical statements.
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Exercises

1. Which of these sentences are propositions? What are the truth values

of those that are propositions?

a) Mumbai is the capital of Maharashtra. b) 2 + 3 = 5.

c) Attempt each of the question. d) 5 + 7 = 10.

2. What is the negation of each of these propositions?

a) Satish has more than 10 GB free disk space on his handset.

b) There is no pollution in Pune city. c) 7× 11× 13 = 1003.

3. Let p and q be the propositions

p : It is below freezing, q : It is snowing.

Write these propositions using p and q and logical connectives (includ-

ing negations).

a) It is below freezing and snowing.

b) It is below freezing but not snowing.

c) It is not below freezing and it is not snowing.

d) It is either snowing or below freezing (or both).

e) If it is below freezing, it is also snowing.

f) Either it is below freezing or it is snowing, but it is not snowing if it

is below freezing.

4. Write each of these statements in the form “if p, then q” in English.

a) It rains whenever the wind blows from the southwest.

b) The apple trees will bloom if it stays warm for a week.

c) Maria will go swimming unless the water is too cold.

5. State the converse, contrapositive, and inverse of each of these condi-

tional statements.

a) If it snows today, I will ski tomorrow.
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b) A positive integer is a prime only if it has no divisors other than 1

and itself.

6. How many rows appear in a truth table for each of these compound

propositions?

a) p→ ¬p
b) (p ∨ ¬r) ∧ (q ∨ ¬s)
c) q ∨ p ∨ ¬s ∨ ¬r ∨ ¬t ∨ u
d) (p ∧ r ∧ t)↔ (q ∧ t)

7. Construct a truth table for each of these compound propositions.

a) p ∧ ¬p
b) (p ∨ ¬q)→ q

c) (p ∨ q)→ (p ∧ q)
d) (p→ q)→ (q → p)

e) (p ∨ q)→ (p⊕ q)
f) (p↔ q)⊕ (¬p↔ ¬r)
g) (p→ q) ∨ (¬p→ q)

h) (p↔ q) ∨ (¬p↔ q)

i) p→ (¬q ∨ r)
j) (p→ q) ∧ (¬p→ r)

k) (p↔ q) ∨ (¬q ↔ r)

Hints and Solutions of Selected Problems

1. a) Yes, T. b) Yes, T. c) No. d) Yes, F.

2. a) Satish has less than or equal to 10 GB free space on his handset.

b)There is pollution in Pune city. c) 7× 11× 13 6= 1003.

3. a) p ∧ q b) p ∧ ¬q.
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4. Hint: Refer to the 13 ways to express the conditional statement.

5. a) Converse: “I will ski tomorrow only if it snows today.”

Contrapositive: “If I do not ski tomorrow, then it will not have snowed

today.”

Inverse: “If it does not snow today, then I will not ski tomorrow.”

6. a) 2. b) 16. c) 64.

1.2 Propositional Equivalences

An important type of step used in a mathematical argument is the replace-

ment of a statement with another statement with the same truth value. Be-

cause of this, methods that produce propositions with the same truth value

as a given compound proposition are used extensively in the construction of

mathematical arguments. Note that we will use the term “compound propo-

sition” to refer to an expression formed from propositional variables using

logical operators, such as p∧ q. We begin our discussion with a classification

of compound propositions according to their possible truth values.

Definition 1.12. A compound proposition that is always true, no matter

what the truth values of the propositional variables that occur in it, is called

a tautology. A compound proposition that is always false is called a con-

tradiction. A compound proposition that is neither a tautology nor a con-

tradiction is called a contingency.

Tautologies and contradictions are often important in mathematical rea-

soning. An example of a tautology is p ∨ ¬p whereas an example for a

contradiction is p ∧ ¬p. The following truth table illustrates this.
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p ¬p p ∨ ¬p p ∧ ¬p
T F T F

F T T F

Table 1.9: Examples of Tautology and Contradiction

1.2.1 Logical Equivalences

Definition 1.13. The compound propositions p and q are called logically

equivalent if p ↔ q is a tautology. The notation p ≡ q denotes that p and

q are logically equivalent.

One way to determine whether two compound propositions are equivalent

is to use a truth table.

Example 1.4. Show that ¬(p ∨ q) and ¬p ∧ ¬q are logically equivalent.

Solution: The truth tables for these compound propositions are displayed in

Table 1.10. Because the truth values of the compound propositions ¬(p ∨ q)
and ¬p∧¬q agree for all possible combinations of the truth values of p and q,

it follows that ¬(p∨ q)↔ (¬p∧¬q) is a tautology and that these compound

propositions are logically equivalent.

p q p ∨ q ¬(p ∨ q) ¬p ¬q ¬p ∧ ¬q
T T T F F F F

T F T F F T F

F T T F T F F

F F F T T T T

Table 1.10: The truth table.

Example 1.5. Show that p→ q and ¬p ∨ q are logically equivalent.

Solution: We construct the truth table for these compound propositions in
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Table 1.11. Because the truth values of ¬p ∨ q and p → q agree, they are

logically equivalent.

p q ¬p ¬p ∨ q p→ q

T T F T T

T F F F F

F T T T T

F F T T T

Table 1.11: The truth table.

We will now establish a logical equivalence of two compound propositions

involving three different propositional variables p, q, and r. To use a truth

table to establish such a logical equivalence, we need eight rows, one for each

possible combination of truth values of these three variables. In general, 2n

rows are required in the truth table to establish logical equivalence involving

n propositional variables.

Table 1.12 demonstrates that p∨ (q ∧ r) and (p∨ q)∧ (p∨ r) are logically

equivalent.

p q r q ∧ r p ∨ (q ∧ r) p ∨ q p ∨ r (p ∨ q) ∧ (p ∨ r)

T T T T T T T T

T T F F T T T T

T F T F T T T T

T F F F T T T T

F T T T T T T T

F T F F F T F F

F F T F F F T F

F F F F F F F F

Table 1.12: The truth table.
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Example 1.6. Show that p∨(q∧r) and (p∨q)∧(p∨r) are logically equivalent.

This is the distributive law of disjunction over conjunction.

Solution: We construct the truth table for these compound propositions in

Table 1.12. Because the truth values of p∨ (q∧ r) and (p∨ q)∧ (p∨ r) agree,

these compound propositions are logically equivalent.

Equivalence Name Equivalence Name

p ∧ T ≡ p Identity (p ∨ q) ∨ r ≡ p ∨ (q ∨ r) Associative

p ∨ F ≡ p laws (p ∧ q) ∧ r ≡ p ∧ (q ∧ r) laws

p ∨ T ≡ T Domination p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) Distributive

p ∧ F ≡F laws p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) laws

p ∨ p ≡ p Idempotent ¬(p ∧ q) ≡ ¬p ∨ ¬q De Morgan’s

p ∧ p ≡ p laws ¬(p ∨ q) ≡ ¬p ∧ ¬q laws

¬(¬p) ≡ p Double p ∨ (p ∧ q) ≡ p Absorption

negation law p ∧ (p ∨ q) ≡ p laws

p ∨ q ≡ q ∨ p Commutative p ∨ ¬p ≡ T Negation

p ∧ q ≡ q ∧ p laws p ∧ ¬p ≡ F laws

Table 1.13: Logical Equivalances

Table 1.13 contains some important equivalences. In these equivalences,

T denotes the compound proposition that is always true and F denotes the

compound proposition that is always false. Note that p1 ∨ p2 ∨ . . . ∨ pn and

p1 ∧ p2 ∧ . . . ∧ pn are well defined whenever p1, p2, . . . , pn are propositions.

Also De Morgan’s laws extend to

¬(p1 ∨ p2 ∨ . . . ∨ pn) ≡ (¬p1 ∧ ¬p2 ∧ . . . ∧ ¬pn)

and

¬(p1 ∧ p2 ∧ . . . ∧ pn) ≡ (¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pn).



CHAPTER 1. PROPOSITIONAL LOGIC 16

Equivalence

p→ q ≡ ¬p ∨ q
p→ q ≡ ¬q → ¬p Logical Equivalences

p ∨ q ≡ ¬p→ q Involving

p ∧ q ≡ ¬(p→ ¬q) Conditional Statements

¬(p→ q) ≡ p ∧ ¬q
(p→ q) ∧ (p→ r) ≡ p→ (q ∧ r)
(p→ r) ∧ (q → r) ≡ (p ∨ q)→ r

(p→ q) ∨ (p→ r) ≡ p→ (q ∨ r)
(p→ r) ∨ (q → r) ≡ (p ∧ q)→ r

p↔ q ≡ (p→ q) ∧ (q → p)

p↔ q ≡ ¬p↔ ¬q Logical Equivalences Involving

p↔ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q) Biconditional Statements

¬(p↔ q) ≡ p↔ ¬q

Table 1.14: Logical Equivalances

Example 1.7. Show that ¬(p∨(¬p∧q)) and ¬p∧¬q are logically equivalent

by developing a series of logical equivalences.

Solution: We will use one of the equivalences in Table 1.13 at a time,

starting with ¬(p∨ (¬p∧ q)) and ending with ¬p∧¬q. We have the following

equivalences.

¬(p ∨ (¬p ∧ q)) ≡ ¬p ∧ ¬(¬p ∧ q) by the second De Morgan law

≡ ¬p ∧ [¬(¬p) ∨ ¬q] by the first De Morgan law

≡ ¬p ∧ (p ∨ ¬q) by the double negation law

≡ (¬p ∧ p) ∨ (¬p ∧ ¬q) by the second distributive law

≡ F ∨(¬p ∧ ¬q) because ¬p ∧ p ≡ F

≡ (¬p ∧ ¬q)∨ F by the commutative law

for disjunction

≡ ¬p ∧ ¬q by the identity law for F
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Consequently ¬(p ∨ (¬p ∧ q)) and ¬p ∧ ¬q are logically equivalent.

Logical equivalences involving conditional statements and biconditional

statements are given in the table 1.14. These equivalences are important as

they form basic tools for proving theorems. Few theorems involve “if and

only if” p ↔ q. To prove the theorem of this type we use the equivalence

p ↔ q ≡ (p → q) ∧ (q → p). So it is enough to prove the statements p → q

and q → p separately.

Remark 1.1. A logical equivalence can be proved by using either a truth

table or by using a chain of known logical equivalences. Also a tautology can

be proved by using either a truth table or by using logical equivalences.

Example 1.8. Show that (p ∧ q)→ (p ∨ q) is a tautology.

Solution: To show that this statement is a tautology, we will use logical

equivalences to demonstrate that it is logically equivalent to T. (Note: This

could also be done using a truth table.)

(p ∧ q)→ (p ∨ q) ≡ ¬(p ∧ q) ∨ (p ∨ q) since p→ q ≡ ¬p ∨ q
≡ (¬p ∨ ¬q) ∨ (p ∨ q) by the first De Morgan law

≡ (¬p ∨ p) ∨ (¬q ∨ q) by the associative and commutative

laws for disjunction

≡ T∨T by the commutative law for disjunction

≡ T by the domination law

Thus we have shown that (p ∧ q)→ (p ∨ q) is a tautology.

Logic has practical applications to the design of computing machines, to

the specification of systems, to artificial intelligence, to computer program-

ming, to programming languages, and to other areas of computer science,

as well as to many other fields of study. In the next chapter we will intro-

duce the concepts which will help us to express the meaning of statements

in mathematics and natural language.
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Exercises

1. Use truth tables to verify

a) (p ∨ q) ∨ r ≡ p ∨ (q ∨ r). b) (p ∧ q) ∧ r ≡ p ∧ (q ∧ r).
c) p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r).

2. Use De Morgan’s laws to find the negation of each of the following

statements.

a) Arun is rich and happy. b) Meera will bicycle or run tomorrow.

c) Arif is smart and hard working.

3. Show that each of these conditional statements is a tautology by using

truth tables.

a) (p ∧ q)→ p.

b) p→ (p ∨ q).
c) ¬(p→ q)→ p.

d) [¬p ∧ (p ∨ q)]→ q.

e) [(p→ q) ∧ (q → r)]→ (p→ r).

f) [(p ∨ q) ∧ (p→ r) ∧ (q → r)]→ r.

4. Determine whether (¬q ∧ (p→ q))→ ¬p is a tautology.

5. Show that p↔ q and (p ∧ q) ∨ (¬p ∧ ¬q) are logically equivalent.

6. Show that ¬(p↔ q) and p↔ ¬q are logically equivalent.

7. Show that p→ q and ¬q → ¬p are logically equivalent.

8. Show that (p→ q)→ r and p→ (q → r) are not logically equivalent.

Hints and Solutions of Selected Problems

1. Hint: Remember to take 8 rows in the truth table.
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2. a) Arun is not rich, or Arun is not happy. b) Meera will not bicycle

tomorrow, and Meera will not run tomorrow.

3. Hint: For tautology all truth values of the compound statement are T.

4. It is a tautology.

5. Use truth table.

6. Each of these is true precisely when p and q have opposite truth values.

7. Use truth table.

8. These are not logically equivalent because when p, q, and r are all false,

(p→ q)→ r is false, but p→ (q → r) is true.



Chapter 2

Predicates and Quantifiers

Introduction

Propositional logic, studied in Chapter 1, cannot adequately express the

meaning of all statements in mathematics and in natural language. For

example, suppose that we know that “Every computer connected to the uni-

versity network is functioning properly.” No rules of propositional logic allow

us to conclude the truth of the statement “MATH5 is functioning properly,”

where MATH5 is one of the computers connected to the college network. In

this chapter, we will introduce a more powerful type of logic called predicate

logic. We will see how predicate logic can be used to express the meaning of

a wide range of statements in mathematics in ways that permit us to reason

and explore relationships between objects. To understand predicate logic,

we first need to introduce the concept of a predicate. Afterwards, we will in-

troduce the notion of quantifiers, which enable us to reason with statements

that assert that a certain property holds for all objects of a certain type

and with statements that assert the existence of an object with a particular

property. We will learn nested quantifiers which play an important role in

mathematics as well as in computer science.

20
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2.1 Predicates

Statements involving variables, such as “x > 3,” “x = y − 4,” “x− y = 2z,”

and “x is a rational number,” and “n is a prime number,” are often found in

mathematical assertions. These statements are neither true nor false when

the values of the variables are not specified. In this section, we will discuss

the ways that propositions can be produced from such statements. The

statement “x is greater than 3” has two parts. The first part, the variable x,

is the subject of the statement. The second part-the predicate, “is greater

than 3”-refers to a property that the subject of the statement can have. We

can denote the statement “x is greater than 3” by P (x), where P denotes

the predicate “is greater than 3” and x is the variable. The statement P (x)

is also said to be the value of the propositional function P at x. Once

a value has been assigned to the variable x, the statement P (x) becomes a

proposition and has a truth value. Consider the following example.

Example 2.1. Let P (x) denote the statement “x > 3.” What are the truth

values of P (5) and P (1)?

Solution: We obtain the statement P (5) by setting x = 5 in the statement

“x > 3.” Hence, P (5), which is the statement “5 > 3,” is true. However,

P (1), which is the statement “1 > 3,” is false.

We can also have statements that involve more than one variable. For

instance, consider the statement ‘‘x = y − 4.” We can denote this statement

by F (x, y), where x and y are variables and F is the predicate. When values

are assigned to the variables x and y, the statement F (x, y) has a truth value.

Hence, F(1, 2) is the statement “1 = 2 − 4,”’ which is false. The statement

F (4, 8) is the proposition “4 = 8 − 4,” which is true. Similarly, we can let

Q(x, y, z) denote the statement “x − y = 2z.” When values are assigned to

the variables x, y, and z, this statement has a truth value. The proposition

Q(1, 2, 3) is obtained by setting x = 1, y = 2, and z = 3 in the statement
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Q(x, y, z). We see that Q(1, 2, 3) is the statement “1 − 2 = 2 × 3,” which is

false. Also note that Q(3, 1, 1), which is the statement “3 − 1 = 2 × 1,” is

true.

In general, a statement involving the n variables x1, x2, . . . , xn can be

denoted by P (x1, x2, . . . , xn). A statement of the form P (x1, x2, . . . , xn) is

the value of the propositional function P at the n-tuple (x1, x2, . . . , xn), and

P is also called an n-place predicate or a n-ary predicate.

Exercises

1. Let P (x) denote the statement “x ≤ 4.” What are the truth values of

the following?

a) P (0) b) P (4) c) P (6) d) P (−3)

2. Let E(x) be the statement “The word x contains the letter ‘e’.” What

are these truth values?

a) E(mathematics) b) E(teacher) c) E(great) d) E(true)

3. Let C(x, y) denote the statement “x is the capital of y.” What are these

truth values?

a) C(New Delhi, India) b) C(Brasilia, Brazil)

c) C(Sydney, Australia) d) C(New York, United States of America)

4. Let S(x, y) denote the statement “x is square of y.”

a) S(9, 3) b) S(25, 4) c) S(121,−11) d) S(109, 10.2)

Hints and Solutions of Selected Problems

1. a) T b) T c) F d) T

2. a) T b) T c) T d) T

3. a) T b) T c) F d) F
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2.2 Quantifiers

When the variables in a propositional function are assigned values, the result-

ing statement becomes a proposition with a certain truth value. However,

there is another important way, called quantification, to create a proposi-

tion from a propositional function. Quantification expresses the extent to

which a predicate is true over a range of elements. In English, the words

all, some, many, none, and few are used in quantifications. Our focus will

be on two types of quantification here: universal quantification, which tells

us that a predicate is true for every element under consideration, and exis-

tential quantification, which tells us that there is one or more element under

consideration for which the predicate is true.

Definition 2.1. The area of logic that deals with predicates and quantifiers

is called the predicate calculus.

2.2.1 The Universal Quantifier

Many mathematical statements assert that a property is true for all values

of a variable in a particular domain, called the domain of discourse (or

the universe of discourse), often just referred to as the domain. Such a

statement is expressed using universal quantification. The universal quan-

tification of P (x) for a particular domain is the proposition that asserts that

P (x) is true for all values of x in this domain. Note that the domain specifies

the possible values of the variable x. The meaning of the universal quantifica-

tion of P (x) changes when we change the domain. The domain must always

be specified when a universal quantifier is used; without it, the universal

quantification of a statement is not defined.

Definition 2.2. The universal quantification of P (x) is the statement

“P (x) for all values of x in the domain.”



CHAPTER 2. PREDICATES AND QUANTIFIERS 24

The notation ∀xP (x) denotes the universal quantification of P (x). Here ∀
is called the universal quantifier. We read ∀xP (x) as “for all xP (x)”

or “for every xP (x).” An element for which P (x) is false is called a coun-

terexample of ∀xP (x).

Example 2.2. Let P (x) be the statement “x + 3 > x.” What is the truth

value of the quantification ∀xP (x), where the domain consists of all real

numbers?

Solution: Because P (x) is true for all real numbers x, the quantification

∀xP (x) is true.

Example 2.3. Let Q(x) be the statement “x > 0.” What is the truth value

of the quantification ∀xQ(x), where the domain consists of all real numbers?

Solution: Q(x) is not true for every real number x, because, for instance,

Q(0) is false. That is, x = 0 is a counterexample for the statement ∀xQ(x).

Thus ∀xQ(x) is false.

Note that a single counterexample is all we need to establish that ∀xP (x)

is false. Looking for counterexamples to universally quantified statements is

an important activity in the study of mathematics. When all the elements

in the domain can be listed say, x1, x2, . . . , xn it follows that the universal

quantification ∀xP (x) is the same as the conjunction P (x1) ∧ P (x2) ∧ . . . ∧
P (xn), because this conjunction is true if and only if P (x1), P (x2), . . . , P (xn)

are all true.

Example 2.4. What is the truth value of ∀x(x2 ≥ x) if the domain consists

of all real numbers? What is the truth value of this statement if the domain

consists of all integers?

Solution: The universal quantification ∀x(x2 ≥ x), where the domain con-

sists of all real numbers, is false. A counterexample is x = 0.5(in fact any

x satisfying 0 < x < 1 will be a counterexample). However, if the domain
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consists of the integers, ∀x(x2 ≥ x) is true, because there are no integers x

with 0 < x < 1.

2.2.2 The Existential Quantifier

Many mathematical statements assert that there is an element with a cer-

tain property. Such statements are expressed using existential quantification.

With existential quantification, we form a proposition that is true if and only

if P (x) is true for at least one value of x in the domain.

Definition 2.3. The existential quantification of P (x) is the proposition

“There exists an element x in the domain such that P (x).”

We use the notation ∃xP (x) for the existential quantification of P (x). Here

∃ is called the existential quantifier.

A domain must always be specified when a statement ∃xP (x) is used.

Furthermore, the meaning of ∃xP (x) changes when the domain changes.

Example 2.5. Let P (x) denote the statement “x > 3.” What is the truth

value of the quantification ∃xP (x), where the domain consists of all real

numbers?

Solution: Because “x > 3” is true when x = 4. Thus the existential

quantification of P (x), which is ∃xP (x), is true.

Example 2.6. Let Q(x) denote the statement “x > x + 1.” What is the

truth value of the quantification ∃xQ(x), where the domain consists of all

real numbers?

Solution: Because Q(x) is false for every real number x, the existential

quantification of Q(x), which is ∃xQ(x), is false.

When all elements in the domain can be listed-say, x1, x2, . . . , xn the exis-

tential quantification ∃xP (x) is the same as the disjunction P (x1)∨P (x2)∨
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. . . ∨ P (xn), because this disjunction is true if and only if at least one of

P (x1), P (x2), . . . , P (xn) is true.

2.3 Quantifiers with Restricted Domains

An abbreviated notation is often used to restrict the domain of a quantifier.

In this notation, a condition a variable must satisfy is included after the

quantifier. This is illustrated in the following example.

Example 2.7. What do the statements ∀x < 0(x2 > 0),∀y 6= 0(y3 6= 0),

and ∃z > 0(z2 = 2) mean, where the domain in each case consists of the real

numbers?

Solution: The statement ∀x < 0(x2 > 0) states that for every real number

x with x < 0, x2 > 0. That is, it states “The square of a negative real

number is positive.” This statement is the same as ∀x(x < 0→ x2 > 0). The

statement ∀y 6= 0(y3 6= 0) states that for every real number y with y 6= 0,

we have y3 6= 0. That is, it states “The cube of every nonzero real number

is nonzero.” Note that this statement is equivalent to ∀y(y 6= 0 → y3 6= 0).

Finally, the statement ∃z > 0(z2 = 2) states that there exists a real number

z with z > 0 such that z2 = 2. That is, it states “There is a positive square

root of 2.” This statement is equivalent to ∃z(z > 0 ∧ z2 = 2).

2.3.1 Precedence of Quantifiers and Binding Variables

The quantifiers ∀ and ∃ have higher precedence than all logical operators

from propositional calculus. For example, ∀xP (x) ∨ Q(x) is the disjunction

of ∀xP (x) and Q(x). In other words, it means (∀xP (x)) ∨Q(x) rather than

∀x(P (x) ∨Q(x)).

When a quantifier is used on the variable x, we say that this occurrence

of the variable is bound. An occurrence of a variable that is not bound
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by a quantifier or set equal to a particular value is said to be free. All

the variables that occur in a propositional function must be bound or set

equal to a particular value to turn it into a proposition. This can be done

using a combination of universal quantifiers, existential quantifiers, and value

assignments.

Definition 2.4. The part of a logical expression to which a quantifier is

applied is called the scope of this quantifier. Consequently, a variable is

free if it is outside the scope of all quantifiers in the formula that specify this

variable.

Example 2.8. In the statement ∃x(x + y = 1), the variable x is bound

by the existential quantification ∃x, but the variable y is free because it is

not bound by a quantifier and no value is assigned to this variable. This

illustrates that in the statement ∃x(x+ y = 1), x is bound, but y is free.

2.3.2 Logical Equivalences Involving Quantifiers

Definition 2.5. Statements involving predicates and quantifiers are logi-

cally equivalent if and only if they have the same truth value no matter

which predicates are substituted into these statements and which domain of

discourse is used for the variables in these propositional functions.

We use the notation S ≡ T to indicate that two statements S and T involving

predicates and quantifiers are logically equivalent.

Example 2.9. Show that ¬∀xP (x) ≡ ∃x¬P (x) and ¬∃xQ(x) ≡ ∀x¬Q(x).

Solution: To show that ¬∀xP (x) and ∃xP (x) are logically equivalent no

matter what the propositional function P (x) is and what the domain is, first

note that ¬∀xP (x) is true if and only if ∀xP (x) is false. Next, note that

∀xP (x) is false if and only if there is an element x in the domain for which

P (x) is false. This holds if and only if there is an element x in the domain for
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which ¬P (x) is true. Finally, note that there is an element x in the domain

for which ¬P (x) is true if and only if ∃x¬P (x) is true. Putting these steps

together, we can conclude that ¬∀xP (x) is true if and only if ∃x¬P (x) is

true. It follows that ¬∀xP (x) and ∃x¬P (x) are logically equivalent.

Similarly we can prove that ¬∃xQ(x) and ∀x¬Q(x) are logically equivalent.

The rules for negations in the above example for quantifiers are called De

Morgan’s laws for quantifiers.

Example 2.10. What are the negations of the statements “There is an

honest politician” and “All Indians eat parathas”?

Solution: Let H(x) denote “x is honest.” Then the statement “There is an

honest politician” is represented by ∃xH(x), where the domain consists of all

politicians. The negation of this statement is ¬∃xH(x), which is equivalent to

∀x¬H(x). This negation can be expressed as “Every politician is dishonest.”

Let C(x) denote “x eats parathas.” Then the statement “All Indians eat

parathas” is represented by ∀xC(x), where the domain consists of all Indians.

The negation of this statement is ¬∀xC(x), which is equivalent to ∃x¬C(x).

This negation can be expressed in several different ways, including “Some

Indian does not eat parathas” and “There is an Indian who does not eat

parathas.”

Example 2.11. What are the negations of the statements ∀x(x2 > x) and

∃x(x2 = 2)?

Solution: The negation of ∀x(x2 > x) is the statement ¬∀x(x2 > x), which

is equivalent to ∃x¬(x2 > x). This can be rewritten as ∃x(x2 ≤ x). The

negation of ∃x(x2 = 2) is the statement ¬∃x(x2 = 2), which is equivalent to

∀x¬(x2 = 2). This can be rewritten as ∀x(x2 6= 2). The truth values of these

statements depend on the domain.

Example 2.12. Show that ¬∀x(P (x) → Q(x)) and ∃x(P (x) ∧ ¬Q(x)) are

logically equivalent.
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Solution: By De Morgan’s law for universal quantifiers, we know that

¬∀x(P (x) → Q(x)) and ∃x(¬(P (x) → Q(x))) are logically equivalent. By

the logical equivalence, we know that ¬(P (x) → Q(x)) and P (x) ∧ ¬Q(x)

are logically equivalent for every x. Because we can substitute one logically

equivalent expression for another in a logical equivalence, it follows that

¬∀x(P (x)→ Q(x)) and ∃x(P (x) ∧ ¬Q(x)) are logically equivalent.

Example 2.13. Express the statement “Every student in this class has stud-

ied calculus” using predicates and quantifiers.

Solution: First, we rewrite the statement so that we can clearly identify the

appropriate quantifiers to use. Doing so, we obtain: “For every student in

this class, that student has studied calculus.” Next, we introduce a variable

x so that our statement becomes “For every student x in this class, x has

studied calculus.” Continuing, we introduce C(x), which is the statement

“x has studied calculus.” Consequently, if the domain for x consists of the

students in the class, we can translate our statement as ∀xC(x).

However, there are other correct approaches; different domains of dis-

course and other predicates can be used. The approach we select depends

on the subsequent reasoning we want to carry out. For example, we may

be interested in a wider group of people than only those in this class. If

we change the domain to consist of all people, we will need to express our

statement as “For every person x, if person x is a student in this class then

x has studied calculus.” If S(x) represents the statement that person x is in

this class, we see that our statement can be expressed as ∀x(S(x)→ C(x)).

Finally, when we are interested in the background of people in subjects

besides calculus, we may prefer to use the two-variable quantifier Q(x, y)

for the statement “student x has studied subject y.” Then we would replace

C(x) by Q(x, calculus) in both approaches to obtain ∀xQ(x, calculus) or

∀x(S(x)→ Q(x, calculus)).
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Thus for different domains of discourse we get different logical expressions.

In mathematical expressions we may need more than one quantifier. In the

next section we will discuss a useful concept in mathematics called the nested

quantifiers.

Exercises

1. Let P (x) be the statement “x spends more than four hours every week-

day in college,” where the domain for x consists of all students. Express

each of these quantifications in English.

a) ∃xP (x) b) ∀xP (x) c) ∃x¬P (x) d) ∀x¬P (x)

2. Translate these statements into English, where C(x) is “x is a come-

dian” and F (x) is “x is funny” and the domain consists of all people.

a) ∀x(C(x)→ F (x)) b) ∀x(C(x) ∧ F (x))

c) ∃x(C(x)→ F (x)) d) ∃x(C(x) ∧ F (x))

3. Let P(x) be the statement “x = x2.” If the domain consists of the

integers, what are these truth values?

a) P (0) b) P (1) c) P (2) d) P (1) e) ∃xP (x) f) ∀xP (x)

4. Suppose that the domain of the propositional function P (x) consists

of the integers 1, 2, 3, 4, and 5. Express these statements without using

quantifiers, instead using only negations, disjunctions, and conjunc-

tions.

a) ∃xP (x) b) ∀xP (x) c) ¬∃xP (x) d) ¬∀xP (x)

e) ∀x((x 6= 3)→ P (x)) ∨ ∃x¬P (x)

5. Suppose that the domain of Q(x, y, z) consists of triples x, y, z, where

x = 0, 1, or 2, y = 0 or 1, and z = 0 or 1. Write out these propositions

using disjunctions and conjunctions.

a) ∀yQ(0, y, 0) b) ∃xQ(x, 1, 1) c) ∃z¬Q(0, 0, z) d) ∃x¬Q(x, 0, 1)
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6. Find a counterexample, if possible, to these universally quantified state-

ments, where the domain for all variables consists of all integers.

a) ∀x(x2 > x) b) ∀x(x > 0 ∨ x < 0) c) ∀x(x = 1)

7. Determine whether ∀x(P (x)→ Q(x)) and ∀xP (x)→ ∀xQ(x) are logi-

cally equivalent. Justify your answer.

8. Show that ∃xP (x) ∧ ∃xQ(x) and ∃x(P (x) ∧ Q(x)) are not logically

equivalent.

Hints and Solutions of Selected Problems

1. a) There is a student who spends more than 4 hours every weekday in

college. b) Every student spends more than 4 hours every weekday in

college. c) There is a student who does not spend more than 4 hours

every weekday in college. d) No student spends more than 4 hours

every weekday in college.

2. a) Every comedian is funny. b) Every person is a funny comedian.

c) There exists a person such that if she or he is a comedian, then she

or he is funny. d) Some comedians are funny.

3. a) T b) T c) F d) F e) T f) F

4. a) P (1) ∨ P (2) ∨ P (3) ∨ P (4) ∨ P (5)

b)P (1) ∧ P (2) ∧ P (3) ∧ P (4) ∧ P (5)

c) ¬(P (1) ∨ P (2) ∨ P (3) ∨ P (4) ∨ P (5))

5. a) Q(0, 0, 0) ∧Q(0, 1, 0) b) Q(0, 1, 1) ∨Q(1, 1, 1) ∨Q(2, 1, 1)

6. a) x = 0
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2.4 Nested Quantifiers

In this section we will introduce nested quantifiers. Two quantifiers are

nested if one is within the scope of the other, such as ∀x∃y(x+ y = 0).

Note that everything within the scope of a quantifier can be thought of as a

propositional function.

Nested quantifiers commonly occur in mathematics and computer science.

To understand statements involving nested quantifiers see the following ex-

amples.

Example 2.14. Assume that the domain for the variables x and y consists of

all real numbers. The statement ∀x∀y(x+y = y+x), says that x+y = y+x

for all real numbers x and y. This is the commutative law for addition of

real numbers. Similarly, the statement

∀x∀y∀z(x+ (y + z) = (x+ y) + z)

is the associative law for addition of real numbers.

Example 2.15. Translate into English the statement

∀x∀y((x > 0) ∧ (y < 0)→ (xy < 0)),

where the domain for both variables consists of all real numbers.

Solution: This statement says that for every real number x and for every

real number y, if x > 0 and y < 0, then xy < 0. That is, this statement says

that for real numbers x and y, if x is positive and y is negative, then xy is

negative. This can be stated in few words as “The product of a positive real

number and a negative real number is always a negative real number.”

Thinking of Quantification as Loops

In working with quantifications of more than one variable, it is sometimes

helpful to think in terms of nested loops. For example, to see whether
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∀x∀yP (x, y) is true, we loop through the values x, and for each x we loop

through the values for y. If we find that P (x, y) is true for all values for x

and y, we have determined that ∀x∀yP (x, y) is true. If we ever hit a value

x for which we hit a value y for which P (x, y) is false, we have shown that

∀x∀yP (x, y) is false.

Similarly, to determine whether ∀x∃yP (x, y) is true, we loop through the

values for x. For each x we loop through the values for y until we find a y

for which P (x, y) is true. If for every x we hit such a y, then ∀x∃yP (x, y) is

true; if for some x we never hit such a y, then ∀x∃yP (x, y) is false.

To see whether ∃x∀yP (x, y) is true, we loop through the values for x until

we find an x for which P (x, y) is always true when we loop through all values

for y. Once we find such an x, we know that ∃x∀yP (x, y) is true. If we never

hit such an x, then we know that ∃x∀yP (x, y) is false.

Finally, to see whether ∃x∃yP (x, y) is true, we loop through the values

for x, where for each x we loop through the values for y until we hit an x

for which we hit a y for which P (x, y) is true. The statement ∃x∃yP (x, y) is

false only if we never hit an x for which we hit a y such that P (x, y) is true.

2.4.1 The Order of Quantifiers

Many mathematical statements involve multiple quantifications of proposi-

tional functions involving more than one variable. It is important to note

that the order of the quantifiers is important, unless all the quantifiers are

universal quantifiers or all are existential quantifiers. These remarks are il-

lustrated in following examples.

Example 2.16. Let P (x, y) be the statement “x + y = y + x”. What are

the truth values of the quantifications ∀x∀yP (x, y) and ∀y∀xP (x, y) where

the domain for all variables consists of all real numbers?

Solution: The quantification ∀x∀yP (x, y) denotes the proposition “For all
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real numbers x, for all real numbers y, x+y = y+x.” Because P (x, y) is true

for all real numbers x and y, the proposition ∀x∀yP (x, y) is true. Note that

the statement ∀y∀xP (x, y) says “For all real numbers y, for all real numbers

x, x+ y = y + x.” This has the same meaning as the statement “For all real

numbers x, for all real numbers y, x+ y = y + x.” That is, ∀x∀yP (x, y) and

∀y∀xP (x, y) have the same meaning, and both are true.

This illustrates the principle that the order of nested universal quantifiers

in a statement without other quantifiers can be changed without changing

the meaning of the quantified statement.

Example 2.17. Let Q(x, y) denote “x+ y = 0.” What are the truth values

of the quantifications ∃y∀xQ(x, y) and ∀x∃yQ(x, y), where the domain for

all variables consists of all real numbers?

Solution: The quantification ∃y∀xQ(x, y) denotes the proposition “There

is a real number y such that for every real number x, Q(x, y).” No matter

what value of y is chosen, there is only one value of x for which x + y = 0.

Because there is no real number y such that x + y = 0 for all real numbers

x, the statement ∃y∀xQ(x, y) is false.

The quantification ∀x∃yQ(x, y) denotes the proposition “For every real num-

ber x there is a real number y such that Q(x, y).” Given a real number x,

there is a real number y such that x + y = 0; namely, y = −x. Hence, the

statement ∀x∃yQ(x, y) is true.

The above example illustrates that the order in which quantifiers appear

makes a difference. The statements ∃y∀xQ(x, y) and ∀x∃yQ(x, y) are not

logically equivalent. The statement ∃y∀xQ(x, y) is true if and only if there

is a y that makes P (x, y) true for every x. So, for this statement to be true,

there must be a particular value of y for which P (x, y) is true regardless of

the choice of x. On the other hand, ∀x∃yP (x, y) is true if and only if for

every value of x there is a value of y for which P (x, y) is true. So, for this
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statement to be true, no matter which x you choose, there must be a value

of y (possibly depending on the x you choose) for which P (x, y) is true. In

other words, in the second case, y can depend on x, whereas in the first

case, y is a constant independent of x. From these observations, it follows

that if ∃y∀xP (x, y) is true, then ∀x∃yP (x, y) must also be true. However, if

∀x∃yP (x, y) is true, it is not necessary for ∃y∀xP (x, y) to be true.

Table 2.1 summarizes the meanings of the different possible quantifica-

tions involving two variables.

Statement When true? When false?

∀x∀yP (x, y)

∀y∀xP (x, y)

P (x, y) is true for every pair

x, y.

There is a pair x, y for which

P (x, y) is false.

∀x∃yP (x, y) For every x there is a y for

which P (x, y) is true.

There is an x such that

P (x, y) is false for every y.

∃x∀yP (x, y) There is an x for which

P (x, y) is true for every y.

For every x there is a y for

which P (x, y) is false.

∃x∃yP (x, y)

∃y∃xP (x, y)

There is a pair x, y for which

P (x, y) is true.

P (x, y) is false for every pair

x, y.

Table 2.1: Quantification of two variables.

2.4.2 Translating Mathematical Statements

Mathematical statements expressed in English can be translated into logical

expressions, as shown in following example.

Example 2.18. Translate the statement “The sum of two positive integers

is always positive” into a logical expression.

Solution: To translate this statement into a logical expression, we first

rewrite it so that the implied quantifiers and a domain are shown: “For

every two integers, if these integers are both positive, then the sum of these
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integers is positive.” Next, we introduce the variables x and y to obtain “For

all positive integers x and y, x+y is positive.” Consequently, we can express

this statement as

∀x∀y((x > 0) ∧ (y > 0)→ (x+ y > 0))

where the domain for both variables consists of all integers. Note that we

could also translate this using the positive integers as the domain. Then

the statement “The sum of two positive integers is always positive” becomes

“For every two positive integers, the sum of these integers is positive.” We

can express this as

∀x∀y(x+ y > 0)

where the domain for both variables consists of all positive integers.

Example 2.19. Translate the statement “Every real number except zero

has a multiplicative inverse.” (A multiplicative inverse of a real number x is

a real number y such that xy = 1.)

Solution: We first rewrite this as “For every real number x except zero, x

has a multiplicative inverse.” We can rewrite this as “For every real number

x, if x 6= 0, then there exists a real number y such that xy = 1.” This can be

rewritten as

∀x((x 6= 0)→ ∃y(xy = 1)).

One example that you may be familiar with is the concept of limit, which

is important in calculus.

Example 2.20. Use quantifiers to express the definition of the limit of a

real-valued function f(x) of a real variable x at a point a in its domain.

Solution: Recall that the definition of the statement

lim
x→a

f(x) = L
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is: For every real number ε > 0 there exists a real number δ > 0 such that

|f(x) − L| < ε whenever 0 < |x − a| < δ. This definition of a limit can be

phrased in terms of quantifiers by

∀ε∃δ∀x(0 < |x− a| < δ → |f(x)− L| < ε),

where the domain for the variables δ and ε consists of all positive real numbers

and for x consists of all real numbers.

This definition can also be expressed as

∀ε > 0∃δ > 0∀x(0 < |x− a| < δ → |f(x)− L| < ε),

when the domain for the variables ε and δ consists of all real numbers, rather

than just the positive real numbers. [Here, restricted quantifiers have been

used. Recall that ∀x > 0P (x) means that for all x with x > 0, P (x) is true.]

2.4.3 Translating from Nested Quantifiers into English

Expressions with nested quantifiers expressing statements in English can be

quite complicated. The first step in translating such an expression is to write

out what the quantifiers and predicates in the expression mean. The next

step is to express this meaning in a simpler sentence.

Example 2.21. Translate the statement

∀x(C(x) ∨ ∃y(C(y) ∧ F (x, y)))

into English, where C(x) is “x has a computer”, F (x, y) is “x and y are

friends,” and the domain for both x and y consists of all students in your

college.

Solution: The statement says that for every student x in your college, x has

a computer or there is a student y such that y has a computer and x and y

are friends. In other words, every student in your college has a computer or

has a friend who has a computer.
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Example 2.22. Translate the statement

∃x∀y∀z((F (x, y) ∧ F (x, z) ∧ (y 6= z))→ ¬F (y, z))

into English, where F (a, b) means a and b are friends and the domain for

x, y, and z consists of all students in your college.

Solution: We first examine the expression (F (x, y) ∧ F (x, z) ∧ (y 6= z)) →
¬F (y, z). This expression says that if students x and y are friends, and stu-

dents x and z are friends, and furthermore, if y and z are not the same

student, then y and z are not friends. It follows that the original statement,

which is triply quantified, says that there is a student x such that for all

students y and all students z other than y, if x and y are friends and x and

z are friends, then y and z are not friends. In other words, there is a student

none of whose friends are also friends with each other.

2.4.4 Translating English Sentences into Logical Ex-

pressions

In this section we see translation of sentences into logical expressions using

nested quantifiers.

Example 2.23. Express the statement “If a person is a woman and is a

parent, then this person is someone’s mother” as a logical expression involv-

ing predicates, quantifiers with a domain consisting of all people, and logical

connectives.

Solution: The statement “If a person is a woman and is a parent, then

this person is someone’s mother” can be expressed as “For every person x,

if person x is a woman and person x is a parent, then there exists a person

y such that person x is the mother of person y.” We introduce the propo-

sitional functions F (x) to represent “x is a woman,” P (x) to represent “x

is a parent,” and M(x, y) to represent “x is the mother of y.” The original
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statement can be represented as

∀x((F (x) ∧ P (x))→ ∃yM(x, y)).

Example 2.24. Express the statement “Everyone has exactly one best friend”

as a logical expression involving predicates, quantifiers with a domain con-

sisting of all people, and logical connectives.

Solution: The statement “Everyone has exactly one best friend” can be

expressed as “For every person x, person x has exactly one best friend.” In-

troducing the universal quantifier, we see that this statement is the same as

“∀x (person x has exactly one best friend),” where the domain consists of

all people. To say that x has exactly one best friend means that there is a

person y who is the best friend of x, and furthermore, that for every person

z, if person z is not person y, then z is not the best friend of x. When we

introduce the predicate B(x, y) to be the statement “y is the best friend of

x,” the statement that x has exactly one best friend can be represented as

∃y(B(x, y) ∧ ∀z((z 6= y)→ ¬B(x, z))).

Consequently, our original statement can be expressed as

∀x∃y(B(x, y) ∧ ∀z((z 6= y)→ ¬B(x, z))).

Example 2.25. Use quantifiers to express the statement “There is a woman

who has taken a flight on every airline in the world.”

Solution: Let P (w, f) be “w has taken f” and Q(f, a) be “f is a flight on

a.” We can express the statement as

∃w∀a∃f(P (w, f) ∧Q(f, a)),

where the domains of discourse for w, f , and a consist of all the women in

the world, all airplane flights, and all airlines, respectively.
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2.4.5 Negating Nested Quantifiers

Statements involving nested quantifiers can be negated by successively ap-

plying the rules for negating statements involving a single quantifier.

Example 2.26. Express the negation of the statement ∀x∃y(xy = 1) so that

no negation precedes a quantifier.

Solution: By successively applying De Morgan’s laws for quantifiers, we

can move the negation in ¬∀x∃y(xy = 1) inside all the quantifiers. We find

that ¬∀x∃y(xy = 1) is equivalent to ∃x¬∃y(xy = 1), which is equivalent to

∃x∀y¬(xy = 1). Because ¬(xy = 1) can be expressed more simply as xy 6= 1,

we conclude that our negated statement can be expressed as ∃x∀y(xy 6= 1).

Example 2.27. Use quantifiers to express the statement that “There does

not exist a woman who has taken a flight on every airline in the world.”

Solution: This statement is the negation of the statement “There is a woman

who has taken a flight on every airline in the world.” Our statement can be

expressed as ¬∃w∀a∃f(P (w, f) ∧ Q(f, a)), where P (w, f) is “w has taken

f” and Q(f, a) is “f is a flight on a.” By successively applying De Morgan’s

laws for quantifiers to move the negation inside successive quantifiers and by

applying De Morgan’s law for negating a conjunction in the last step, we find

that our statement is equivalent to each of this sequence of statements:

∀w¬∀a∃f(P (w, f) ∧Q(f, a)) ≡ ∀w∃a¬∃f(P (w, f) ∧Q(f, a))

≡ ∀w∃a∀f¬(P (w, f) ∧Q(f, a))

≡ ∀w∃a∀f(¬P (w, f) ∨ ¬Q(f, a))

This last statement states “For every woman there is an airline such that for

all flights, this woman has not taken that flight or that flight is not on this

airline.”

Example 2.28. Use quantifiers and predicates to express the fact that

lim
x→a

f(x) does not exist where f(x) is a real-valued function of a real variable
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x and a belongs to the domain of f .

Solution: To say that lim
x→a

f(x) does not exist means that for all real numbers

L, lim
x→a

f(x) 6= L. The statement lim
x→a

f(x) 6= L can be expressed as

¬∀ε > 0∃δ > 0∀x(0 < |x− a| < δ → |f(x)− L| < ε).

Successively applying the rules for negating quantified expressions, we con-

struct this sequence of equivalent statements

¬∀ε > 0∃δ > 0∀x(0 < |x− a| < δ → |f(x)− L| < ε).

≡ ∃ε > 0¬∃δ > 0∀x(0 < |x− a| < δ → |f(x)− L| < ε)

≡ ∃ε > 0∀δ > 0¬∀x(0 < |x− a| < δ → |f(x)− L| < ε)

≡ ∃ε > 0∀δ > 0∃x¬(0 < |x− a| < δ → |f(x)− L| < ε)

≡ ∃ε > 0∀δ > 0∃x(0 < |x− a| < δ ∧ |f(x)− L| ≥ ε)

In the last step we used the equivalence ¬(p→ q) ≡ p∧¬q. Because the state-

ment “lim
x→a

f(x) does not exist” means for all real numbers L, lim
x→a

f(x) 6= L

this can be expressed as

∀L∃ε > 0∀δ > 0∃x(0 < |x− a| < δ ∧ |f(x)− L| ≥ ε)

This last statement says that for every real number L there is a real number

ε > 0 such that for every real number δ > 0, there exists a real number x

such that 0 < |x− a| < δ and |f(x)− L| ≥ ε.

Exercises

1. Translate these statements into English, where the domain for each

variable consists of all real numbers.

a)∀x∃y(x < y) b) ∀x∀y(((x ≥ 0) ∧ (y ≥ 0))→ (xy ≥ 0))

c)∀x∀y∃z(xy = z)

2. Let T (x, y) mean that “student x likes cuisine(method of cooking) y,”

where the domain for x consists of all students at your college and the
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domain for y consists of all cuisines. Express each of these statements

by a simple English sentence.

a) ¬T (Hussein, Japanese)

b) ∃xT (x,Korean) ∧ ∀xT (x,Mexican)

c) ∃y(T (Monika, y) ∨ T (Jay, y))

d) ∀x∀z∃y((x 6= z)→ ¬(T (x, y) ∧ T (z, y)))

e) ∃x∃z∀y(T (x, y)↔ T (z, y))

3. Let L(x, y) be the statement “x loves y,” where the domain for both

x and y consists of all people in the world. Use quantifiers to express

each of these statements.

a) Everybody loves Jerry.

b) Everybody loves somebody.

c) There is somebody whom everybody loves.

d) Nobody loves everybody.

e) There is somebody whom Lisa does not love.

f ) There is somebody whom no one loves.

4. Use quantifiers and predicates with more than one variable to express

these statements.

a) Every computer science student needs a course in discrete mathe-

matics.

b) There is a student in this class who owns a personal computer.

c) Every student in this class has taken at least one computer science

course.

d) There is a student in this class who has taken at least one course in

computer science.

e) Every student in this class has been in every building on campus.

5. Express each of these statements using mathematical and logical op-

erators, predicates, and quantifiers, where the domain consists of all
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integers.

a) The sum of two negative integers is negative.

b) The difference of two positive integers is not necessarily positive.

c) The sum of the squares of two integers is less than or equal to the

square of their sum.

d) The absolute value of the product of two integers is the product of

their absolute values.

6. Determine the truth value of each of these statements if the domain for

all variables consists of all integers.

a)∀n∃m(n2 < m) b) ∃n∀m(n < m2)

c) ∀n∃m(n+m = 0) d) ∃n∀m(nm = m)

e) ∃n∃m(n2 +m2 = 5) f) ∃n∃m(n2 +m2 = 6)

g) ∀n∀m∃p
(
p =

(m+ n)

2

)
h) ∃n∃m(n+m = 4 ∧ n−m = 2)

i) ∃n∃m(n+m = 4 ∧ n−m = 1)

7. Express the negations of each of these statements so that all negation

symbols immediately precede predicates.

a) ∀x∃y∀zT (x, y, z) b) ∀x∃yP (x, y) ∨ ∀x∃yQ(x, y)

c) ∀x∃y(P (x, y) ∧ ∃zR(x, y, z)) d) ∀x∃y(P (x, y)→ Q(x, y))

Hints and Solutions:

1. a) For every real number x there exists a real number y such that x is

less than y. b) For every real number x and real number y, if x and y

are both nonnegative, then their product is nonnegative. c) For every

real number x and real number y, there exists a real number z such

that xy = z.

2. a) Hussein does not like Japanese cuisine. b) Some student at your

college likes Korean cuisine, and everyone at your college likes Mexican
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cuisine. c) There is some cuisine that either Monika or Jay likes. d)

For every pair of distinct students at your college, there is some cuisine

that at least one them does not like. e) There are two students at your

college who like exactly the same set of cuisines.

3. a) ∀xL(x, Jerry) b)∀x∃yL(x, y) c) ∃y∀xL(x, y) d) ∀x∃y¬L(x, y)

e) ∃x¬L(Lisa, x) f) ∃x∀y¬L(y, x)

4. a) ∀xP (x), where P (x) is “x needs a course in discrete mathematics”

and the domain consists of all computer science students b) ∃xP (x),

where P (x) is “x owns a personal computer” and the domain consists

of all students in this class c) ∀x∃yP (x, y), where P (x, y) is “x has

taken y,” the domain for x consists of all students in this class, and the

domain for y consists of all computer science classes d) ∃x∃yP (x, y),

where P (x, y) and domains are the same as in part (c) e) ∀x∀yP (x, y),

where P (x, y) is “x has been in y,” the domain for x consists of all

students in this class, and the domain for y consists of all buildings on

campus.

5. a) ∀x∀y((x < 0) ∧ (y < 0)→ (x+ y < 0))

b)¬∀x∀y((x > 0) ∧ (y > 0)→ (x− y > 0))

c) ∀x∀y(x2 + y2 ≤ (x+ y)2)

d) ∀x∀y(|xy| = |x||y|)

6. a) True b) True c) True d) True e) True f) False g) False h) True i)

False

7. a)∃x∀y∃z¬T (x, y, z)

b)∃x∀y¬P (x, y) ∧ ∃x∀y¬Q(x, y)

c ) ∃x∀y(¬P (x, y) ∨ ∀z¬R(x, y, z))

d) ∃x∀y(P (x, y) ∧ ¬Q(xy))



Chapter 3

Methods of Proofs

Introduction

Proofs in mathematics are valid arguments that establish the truth of math-

ematical statements. To deduce new statements from statements we already

have, we use rules of inference. Rules of inference are our basic tools for

establishing the truth of statements.

Before we study mathematical proofs, we will look at arguments that in-

volve only compound propositions. We define what it means for an argument

involving compound propositions to be valid. Then we will introduce a col-

lection of rules of inference in propositional logic. These rules of inference are

among the most important ingredients in producing valid arguments. Later

we illustrate how rules of inference are used to produce valid arguments.

After studying rules of inference in propositional logic, we will introduce

rules of inference for quantified statements. We will describe how these rules

of inference can be used to produce valid arguments. These rules of inference

for statements involving existential and universal quantifiers play an impor-

tant role in proofs in computer science and mathematics, although they are

often used without being explicitly mentioned.

45
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Finally, we will show how rules of inference for propositions and for quan-

tified statements can be combined. These combinations of rule of inference

are often used together in complicated arguments.

Later in this chapter we develop different proof methods that will enable

us to prove many different types of results. After introducing many different

methods of proof, we will introduce several strategies for constructing proofs.

3.1 Rules of Inference

Definition 3.1. An argument in propositional logic is a sequence of propo-

sitions. All but the final proposition in the argument are called premises

and the final proposition is called the conclusion.

An argument is valid if the truth of all its premises implies that the

conclusion is true. An argument form in propositional logic is a sequence

of compound propositions involving propositional variables. An argument

form is valid no matter which particular propositions are substituted for the

propositional variables in its premises, the conclusion is true if the premises

are all true.

Consider the following argument involving propositions (which, by definition,

is a sequence of propositions):

“If you have a current password, then you can log onto the network.”

“You have a current password.”

Therefore,

“You can log onto the network.”

We would like to determine whether this is a valid argument. That is, we

would like to determine whether the conclusion “You can log onto the net-

work” must be true when the premises “If you have a current password, then

you can log onto the network” and “You have a current password” are both

true.
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Before we discuss the validity of this particular argument, we will look at its

form. Use p to represent

“You have a current password” and q to represent “You can log onto the

network.” Then, the argument has the form

p→ q

p

∴ q

where ∴ is the symbol that denotes “therefore”.

We know that when p and q are propositional variables, the statement

((p→ q) ∧ p)→ q is a tautology. In particular, when both p→ q and p are

true, we know that q must also be true. We say this form of argument is

valid because whenever all its premises (all statements in the argument other

than the final one, the conclusion) are true, the conclusion must also be true.

Now suppose that both “If you have a current password, then you can log

onto the network” and “You have a current password” are true statements.

When we replace p by “You have a current password” and q by “You can

log onto the network,” it necessarily follows that the conclusion “You can log

onto the network” is true. This argument is valid because its form is valid.

Note that whenever we replace p and q by propositions where p → q and p

are both true, then q must also be true.

In our discussion, to analyze an argument, we replaced propositions by

propositional variables. This changed an argument to an argument form. We

saw that the validity of an argument follows from the validity of the form of

the argument.

From the definition of a valid argument form we see that the argument

form with premises p1, p2, ..., pn and conclusion q is valid, when (p1∧p2∧ ...∧
pn)→ q is a tautology. The key to showing that an argument in propositional

logic is valid is to show that its argument form is valid. Consequently, we

would like techniques to show that argument forms are valid. We will now
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develop methods for accomplishing this task.

3.1.1 Rules of Inference for Propositional Logic

We can always use a truth table to show that an argument form is valid.

We do this by showing that whenever the premises are true, the conclusion

must also be true. However, this can be a tedious approach. Instead, we can

first establish the validity of some relatively simple argument forms, called

rules of inference. These rules of inference can be used as building blocks

to construct more complicated valid argument forms. We will now introduce

the most important rules of inference in propositional logic.

The tautology (p ∧ (p → q)) → q is the basis of the rule of inference called

modus ponens, or the law of detachment. This tautology leads to the

following valid argument form, which we have already seen in our initial

discussion about arguments:

p→ q

p

∴ q

In particular, modus ponens tells us that if a conditional statement and the

hypothesis of this conditional statement are both true, then the conclusion

must also be true. Following example illustrates the use of modus ponens.

Example 3.1. Suppose that the conditional statement “If it snows today,

then we will go skiing” and its hypothesis, “It is snowing today,” are true.

Then, by modus ponens, it follows that the conclusion of the conditional

statement, “We will go skiing,” is true.

As we mentioned earlier, a valid argument can lead to an incorrect con-

clusion if one or more of its premises is false. We illustrate this in next

example.
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Example 3.2. Determine whether the argument given here is valid and de-

termine whether its conclusion must be true because of the validity of the

argument.

If
√

2 >
3

2
, then (

√
2)2 >

(
3

2

)2

. We know that
√

2 >
3

2
.

Consequently,
(√

2
)2

= 2 >

(
3

2

)2

=

(
9

4

)
.

Solution: Let p be the proposition “
√

2 >
3

2
” and q the proposition “2 >(

3

2

)2

”. The premises of the argument are p→ q and p, and q is its conclu-

sion. This argument is valid because it is constructed by using modus ponens,

a valid argument form. However, one of its premise,
√

2 >
3

2
, is false. Conse-

quently, we cannot conclude that the conclusion is true. Furthermore, note

that the conclusion of this argument is false, because 2 <
9

4
.

There are many useful rules of inference for propositional logic. Perhaps

the most widely used of these are listed in Table 3.1.

Example 3.3. State which rule of inference is the basis of the following

argument: “It is below freezing now. Therefore, it is either below freezing or

raining now.”

Solution: Let p be the proposition “It is below freezing now” and q the

proposition “It is raining now.” Then this argument is of the form

p

∴ p ∨ q
This is an argument that uses the addition rule(refer to Table 3.1).

Example 3.4. State which rule of inference is the basis of the following

argument:

“It is below freezing and raining now. Therefore, it is below freezing now.”

Solution: Let p be the proposition “It is below freezing now,” and let q be

the proposition “It is raining now.” This argument is of the form
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Rule of

Inference

Tautology Name

p

p→ q

∴ q

(p ∧ (p→ q))→ q Modus ponens

¬q
p→ q

∴ ¬p

(¬q ∧ (p→ q))→ ¬p Modus tollens

p→ q

q → r

∴ p→ r

((p→ q) ∧ (q → r))→ (p→ r) Hypothetical syllogism

p ∨ q
¬p

∴ q

((p ∨ q) ∧ ¬p)→ q)) Disjunctive syllogism

p

∴ p ∨ q
p→ (p→ q) Addition

p ∧ q
∴ p

(p ∧ q)→ p Simplification

p

q

∴ p ∧ q

(p ∧ q)→ (p→ q) Conjunction

p ∨ q
¬p ∨ r

∴ q ∨ r

((p ∨ q) ∧ (¬p ∨ r))→ (q ∨ r) Resolution

Table 3.1: Rules of Inference.
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p ∧ q
∴ p

This argument uses the simplification rule.

Example 3.5. State which rule of inference is used in the argument: “If

it rains today, then we will not have a barbecue(outdoor meal) today. If

we do not have a barbecue today, then we will have a barbecue tomorrow.

Therefore, if it rains today, then we will have a barbecue tomorrow.”

Solution: Let p be the proposition “It is raining today,” let q be the propo-

sition “We will not have a barbecue today,” and let r be the proposition “We

will have a barbecue tomorrow.” Then this argument is of the form

p→ q

q → r

∴ p→ r

Hence, this argument is a hypothetical syllogism.

Using Rules of Inference to Build Arguments

When there are many premises, several rules of inference are often needed

to show that an argument is valid. This is illustrated in following examples,

where the steps of arguments are displayed on separate lines, with the reason

for each step explicitly stated. These examples also show how arguments in

English can be analyzed using rules of inference.

Example 3.6. Show that the premises “It is not sunny this afternoon and

it is colder than yesterday,” “We will go swimming only if it is sunny,” “If

we do not go swimming, then we will take a boat trip,” and “If we take a

boat trip, then we will be home by sunset lead to the conclusion.” We will

be home by sunset.”

Solution: Let p be the proposition “It is sunny this afternoon,” q the propo-

sition “It is colder than yesterday,” r the proposition “We will go swimming,”

s the proposition “We will take a boat trip,” and t the proposition “We will
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be home by sunset.” Then the premises become ¬p ∧ q, r → p,¬r → s, and

s → t. The conclusion is simply t. We need to give a valid argument with

premises ¬p ∧ q, r → p,¬r → s, s→ t and conclusion t.

We construct an argument to show that our premises lead to the desired

conclusion as follows:
Step Reason

1.¬p ∧ q Premise

2. ¬p Simplification using (1)

3. r → p Premise

4. ¬r Modus tollens using (2) and (3)

5. ¬r → s Premise

6. s Modus ponens using (4) and (5)

7. s→ t Premise

8. t Modus ponens using (6) and (7)

3.1.2 Rules of Inference for Quantified Statements

We have discussed rules of inference for propositions. We will now describe

some important rules of inference for statements involving quantifiers. These

rules of inference are used extensively in mathematical arguments, often with-

out being explicitly mentioned.

Universal instantiation is the rule of inference used to conclude that

P (c) is true, where c is a particular member of the domain, given the premise

∀xP (x). Universal instantiation is used when we conclude from the state-

ment “All women are wise” that “Lisa is wise,” where Lisa is a member of

the domain of all women.

Universal generalization is the rule of inference that states that ∀xP (x)

is true, given the premise that P (c) is true for all elements c in the domain.

Universal generalization is used when we show that ∀xP (x) is true by taking

an arbitrary element c from the domain and showing that P (c) is true. The
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element c that we select must be an arbitrary, and not a specific, element

of the domain. That is, when we assert from ∀xP (x) the existence of an

element c in the domain, we have no control over c and cannot make any

other assumptions about c other than it comes from the domain.

Existential instantiation is the rule that allows us to conclude that

there is an element c in the domain for which P (c) is true if we know that

∀xP (x) is true. We cannot select an arbitrary value of c here, but rather it

must be a c for which P (c) is true. Usually we have no knowledge of what

c is, only that it exists. Because it exists, we may give it a name (c) and

continue our argument.

Existential generalization is the rule of inference that is used to con-

clude that ∀xP (x) is true when a particular element c with P (c) true is

known. That is, if we know one element c in the domain for which P (c) is

true, then we know that ∀xP (x) is true.

We summarize these rules of inference in Table 3.2. We will illustrate how

some of these rules of inference for quantified statements are used in following

examples.

Rule of Inference Name

∀xP (x)

∴ P (c)

Universal instantiation

P (c) for an ordinary c

∴ ∀xP (x)

Universal generalization

∃xP (x)

∴ P (c) for some element c

Existential instantiation

P (c) for some element c

∴ ∃xP (x)

Existential generalization

Table 3.2: Rules of Inference for quantified statements.
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Example 3.7. Show that the premises “Everyone in this discrete mathe-

matics class has taken a course in computer science” and “Maria is a student

in this class” imply the conclusion “Maria has taken a course in computer

science.”

Solution: Let D(x) denote “x is in this discrete mathematics class,” and let

C(x) denote “x has taken a course in computer science.” Then the premises

are ∀x(D(x)→ C(x)) and D(Maria). The conclusion is C(Maria).

The following steps can be used to establish the conclusion from the premises.

Step Reason

1. ∀x(D(x)→ C(x)) Premise

2. D(Maria) → C(Maria) Universal instantiation from (1)

3. D(Maria) Premise

4. C(Maria) Modus ponens from (2) and (3)

Exercises

1. Find the argument form for the following argument and determine

whether it is valid. Can we conclude that the conclusion is true if

the premises are true?

If Socrates is human, then Socrates is mortal.

Socrates is human.

∴ Socrates is mortal.

2. What rules of inference are used in this famous argument? “All men

are mortal. Socrates is a man. Therefore, Socrates is mortal.”

3. For each of these collections of premises, what relevant conclusion or

conclusions can be drawn? Explain the rules of inference used to obtain

each conclusion from the premises.

a) “If I take the day off, it either rains or snows.” “I took Tuesday off

or I took Thursday off.” “It was sunny on Tuesday.” “It did not snow
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on Thursday.”

b) “If I eat spicy foods, then I have strange dreams.” “I have strange

dreams if there is thunder while I sleep.” “I did not have strange

dreams.”

4. What is wrong with this argument? Let H(x) be “x is happy.” Given

the premise ∃xH(x), we conclude that H(Lola). Therefore, Lola is

happy.

5. Use rules of inference to show that if ∀x(P (x) → (Q(x) ∧ S(x))) and

∀x(P (x) ∧R(x)) are true, then ∀x(R(x) ∧ S(x)) is true.

Hints and Solutions to Selected Problems:

1. Modus ponens; valid; the conclusion is true, because the hypotheses

are true.

2. Universal instantiation is used to conclude that “If Socrates is a man,

then Socrates is mortal.” Modus ponens is then used to conclude that

Socrates is mortal.

3. a) Valid conclusions are “I did not take Tuesday off,” “I took Thursday

off,” “It rained on Thursday.” b)“I did not eat spicy foods and it did

not thunder” is a valid conclusion.

4. We know that some x exists that makes H(x) true, but we cannot

conclude that Lola is one such x.

3.2 Introduction to Proofs

In this section we introduce the notion of a proof and describe methods for

constructing proofs. A proof is a valid argument that establishes the truth
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of a mathematical statement. A proof can use the hypotheses of the theorem,

if any, axioms assumed to be true, and previously proven theorems. Using

these ingredients and rules of inference, the final step of the proof establishes

the truth of the statement being proved.

The methods of proof discussed in this chapter are important not only

because they are used to prove mathematical theorems, but also for their

many applications to computer science. These applications include verifying

that computer programs are correct, establishing that operating systems are

secure, making inferences in artificial intelligence, showing that system spec-

ifications are consistent, and so on.

Formally, a theorem is a statement that can be shown to be true. In

mathematical writing, the term theorem is usually reserved for a statement

that is considered at least somewhat important. Less important theorems

sometimes are called propositions. A mathematical system consists of ax-

ioms, definitions, and theorems. We demonstrate that a theorem is true with

a proof. A proof is a valid argument that established the truth of a theo-

rem. An axiom is a statement that is assumed to be true. A less important

theorem that is helpful in the proof of other results is called a lemma. A

corollary is a theorem that can be established directly from a theorem that

has been proved. A conjecture is a statement that is being proposed to be

a true statement.

3.2.1 Methods of Proving Theorems

Proving mathematical theorems can be difficult. To construct proofs we

need all available ammunition, including a powerful battery of different proof

methods. These methods provide the overall approach and strategy of proofs.

Understanding these methods is a key component of learning how to read and

construct mathematical proofs. Once we have chosen a method of proof, we



CHAPTER 3. METHODS OF PROOFS 57

use axioms, definitions of terms, previously proved results, and rules of infer-

ence to complete the proof. We will also assume the usual axioms whenever

we prove a result about geometry.

Direct Proofs

A direct proof of a conditional statement p→ q is constructed when the first

step is the assumption that p is true; subsequent steps are constructed using

rules of inference, with the final step showing that q must also be true. A

direct proof shows that a conditional statement p → q is true by showing

that if p is true, then q must also be true, so that the combination p true

and q false never occurs.

We will provide examples of several different direct proofs.

Example 3.8. Give a direct proof of the theorem “If n is an odd integer,

then n2 is odd.”

Solution: Note that this theorem states ∀n(P (n) → Q(n)), where P (n) is

“n is an odd integer” and Q(n) is “n2 is odd.” As we have said, we will follow

the usual convention in mathematical proofs by showing that P (n) implies

Q(n). To begin a direct proof of this theorem, we assume that the hypothesis

of this conditional statement is true, namely, we assume that n is odd. By

the definition of an odd integer, it follows that n = 2k + 1, where k is some

integer. We want to show that n2 is also odd. We can square both sides of

the equation n = 2k + 1 to obtain a new equation that expresses n2. When

we do this, we find that n2 = (2k+ 1)2 = 4k2 + 4k+ 1 = 2(2k2 + 2k) + 1. By

the definition of an odd integer, we can conclude that n2 is an odd integer.

Consequently, we have proved that if n is an odd integer, then n2 is an odd

integer.

Example 3.9. Give a direct proof that if m and n are both perfect squares,

then nm is also a perfect square. (An integer a is a perfect square if there is

an integer b such that a = b2.)
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Solution: To produce a direct proof of this theorem, we assume that the

hypothesis of this conditional statement is true, namely, we assume that m

and n are both perfect squares. By the definition of a perfect square, it

follows that there are integers s and t such that m = s2 and n = t2. The

goal of the proof is to show that mn must also be a perfect square when

m and n are; looking ahead we see how we can show this by substituting

s2 for m and t2 for n into mn. This tells us that mn = s2t2. Hence,

s2t2 = (ss)(tt) = (st)(st) = (st)2, using commutativity and associativity

of multiplication. By the definition of perfect square, it follows that mn is

also a perfect square, because it is the square of st, which is an integer. We

have proved that if m and n are both perfect squares, then mn is also a

perfect square.

Proof by Contraposition

Direct proofs lead from the premises of a theorem to the conclusion. They

begin with the premises, continue with a sequence of deductions, and end

with the conclusion. However, we will see that attempts at direct proofs often

reach dead ends. We need other methods of proving theorems of the form

∀x(P (x)→ Q(x)). Proofs of theorems of this type that are not direct proofs,

that is, that do not start with the premises and end with the conclusion, are

called indirect proofs. An extremely useful type of indirect proof is known as

proof by contraposition. Proofs by contraposition make use of the fact that

the conditional statement p→ q is equivalent to its contraposition, ¬q → ¬p.
This means that the conditional statement p→ q can be proved by showing

that its contraposition, ¬q → ¬p, is true.

Example 3.10. Prove that if n is an integer and 3n + 2 is odd, then n is

odd.

Solution: We first attempt a direct proof. To construct a direct proof, we

first assume that 3n+ 2 is an odd integer. This means that 3n+ 2 = 2k + 1
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for some integer k. Can we use this fact to show that n is odd? We see that

3n+ 1 = 2k, but there does not seem to be any direct way to conclude that

n is odd. Because our attempt at a direct proof failed, we next try a proof

by contraposition.

The first step in a proof by contraposition is to assume that the conclusion

of the conditional statement “If 3n+2 is odd, then n is odd” is false; namely,

assume that n is even. Then, by the definition of an even integer, n = 2k

for some integer k. Substituting 2k for n, we find that 3n+ 2 = 3(2k) + 2 =

6k + 2 = 2(3k + 1). This tells us that 3n+ 2 is even. This is the negation of

the premise of the theorem. Thus we have proved the theorem “If 3n + 2 is

odd, then n is odd.”

Example 3.11. If n is an integer such that n2 is odd then n is also odd.

Solution: Suppose that n is an integer that is even. Then there exists an

integer k such that n = 2k. But then n2 = 2(2k2) which is even. This is

negation of the hypothesis.

Vacuous and Trivial Proofs

A vacuous proof is a proof of an implication p→ q in which it is shown that

p is false. Consequently, if we can show that p is false, then we have a proof,

called a vacuous proof, of the conditional statement p→ q.

Example 3.12. Show that the proposition P (0) is true, where P (n) is “If

n > 1, then n2 > n” and the domain consists of all integers.

Solution: Note that P (0) is “If 0 > 1, then 02 > 0.” We can show P (0)

using a vacuous proof. Indeed, the hypothesis 0 > 1 is false. This tells us

that P (0) is automatically true.

Example 3.13. Use the method of vacuous proof to show that if x ∈ φ ;

then David is playing pool.

Solution: Since the proposition x ∈ φ ; is always false, the given proposition

is vacuously true.
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Proofs by Contradiction

Suppose we want to prove that a statement p is true. Furthermore, suppose

that we can find a contradiction q such that ¬p → q is true. Because q is

false, but ¬p→ q is true, we can conclude that ¬p is false, which means that

p is true. Because a proof by contradiction does not prove a result directly,

it is another type of indirect proof. We provide three examples of proof by

contradiction.

Example 3.14. Show that at least four of any 22 days must fall on the same

day of the week.

Solution: Let p be the proposition “At least four of 22 chosen days fall on

the same day of the week.” Suppose that ¬p is true. This means that at

most three of the 22 days fall on the same day of the week. Because there

are seven days of the week, this implies that at most 21 days could have been

chosen, as for each of the days of the week, at most three of the chosen days

could fall on that day. This contradicts the premise that we have 22 days

under consideration. That is, if r is the statement that 22 days are chosen,

then we have shown that ¬p → (r ∧ ¬r). Consequently, we know that p is

true. We have proved that at least four of 22 chosen days fall on the same

day of the week.

Example 3.15. If n2 is an even integer so is n.

Solution: Suppose the contrary. That is suppose that n is odd. Then there

is an integer k such that n = 2k + 1. In this case, n2 = 2(2k2 + 2k) + 1 is

odd and this contradicts the assumption that n2 is even. Hence, n must be

even.

Proofs of Equivalence

To prove a theorem that is a biconditional statement, that is, a statement of

the form p↔ q, we show that p→ q and q → p are both true. The validity

of this approach is based on the tautology (p↔ q)↔ (p→ q) ∧ (q → p).
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Example 3.16. Prove the theorem “If n is an integer, then n is odd if and

only if n2 is odd.”

Solution: This theorem has the form “p if and only if q” where p is “n is

odd” and q is “n2 is odd.” To prove this theorem, we need to show that p→ q

and q → p are true. We have already shown in Example 3.8 p → q is true

and that q → p is true can be proved by direct method (left as an exercise).

Hence, we have shown that the theorem is true.

Sometimes a theorem states that several propositions are equivalent. Such

a theorem states that propositions p1, p2, p3, . . . , pn are equivalent. This can

be written as p1 ↔ p2 ↔ ... ↔ pn, which states that all n propositions have

the same truth values, and consequently, that for all i and j with 1 ≤ i ≤ n

and 1 ≤ j ≤ n, pi and pj are equivalent.

Example 3.17. Show that these statements about the integer n are equiv-

alent:

p1 : n is even. p2 : n− 1 is odd. p3 : n2 is even.

Solution: We will show that these three statements are equivalent by show-

ing that the conditional statements p1 → p2, p2 → p3, and p3 → p1 are true.

We use a direct proof to show that p1 → p2. Suppose that n is even. Then

n = 2k for some integer k. Consequently, n − 1 = 2k − 1 = 2(k − 1) + 1.

This means that n − 1 is odd because it is of the form 2m + 1, where m is

the integer k − 1.

We also use a direct proof to show that p2 → p3. Now suppose n − 1 is

odd. Then n − 1 = 2k + 1 for some integer k. Hence, n = 2k + 2 so that

n2 = (2k+ 2)2 = 4k2 + 8k+ 4 = 2(2k2 + 4k+ 2). This means that n2 is twice

the integer 2k2 + 4k + 2, and hence is even.

To prove p3 → p1, we use a proof by contraposition. That is, we prove that

if n is not even, then n2 is not even. This is the same as proving that if n is

odd, then n2 is odd, which we have already done. This completes the proof.
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Counterexamples

In chapter 2, we stated that to show that a statement of the form ∀xP (x) is

false, we need only find a counterexample, that is, an example x for which

P (x) is false. We illustrate the use of counterexamples.

Example 3.18. Show that the statement “Every positive integer is the sum

of the squares of two integers” is false.

Solution: To show that this statement is false, we look for a counterexample,

which is a particular integer that is not the sum of the squares of two integers.

It does not take long to find a counterexample, because 3 cannot be written

as the sum of the squares of two integers. To show this is the case, note that

the only perfect squares not exceeding 3 are 02 = 0 and 12 = 1. Furthermore,

there is no way to get 3 as the sum of two terms each of which is 0 or 1.

Consequently, we have shown that “Every positive integer is the sum of the

squares of two integers” is false.

Exercises

1. Use a direct proof to show that the sum of two odd integers is even.

2. Show that the square of an even number is an even number using a

direct proof.

3. Use a proof by contradiction to prove that the sum of an irrational

number and a rational number is irrational.

4. Prove the proposition P (0), where P (n) is the proposition If n is a

positive integer greater than 1, then n2 > n. What kind of proof did

you use?

5. Let P (n) be the proposition “If a and b are positive real numbers, then

(a + b)n = an + bn.” Prove that P (1) is true. What kind of proof did

you use?
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6. Show that at least ten of any 64 days chosen must fall on the same day

of the week.

7. Use a proof by contradiction to show that there is no rational number

r for which r3 + r + 1 = 0. [Hint: Assume that r =
a

b
is a root, where

a and b are integers and
a

b
is in lowest terms. Obtain an equation

involving integers by multiplying by b3. Then look at whether a and b

are each odd or even.]

8. Show that these statements about the integer x are equivalent:

(i) 3x+ 2 is even, (ii) x+ 5 is odd, (iii) x2 is even.

9. Show that these statements about the real number x are equivalent:

(i) x is irrational, (ii) 3x+ 2 is irrational, (iii)
x

2
is irrational.



Chapter 4

Basics of Counting

Introduction

The origin of combinatorics goes far back in history. Magic squares (arrays

where columns, rows and diagonals all sum to the same number) were pop-

ular subjects of mathematical study in medieval times. Jewish and Arab

mathematicians in the early middle ages focused on combinatorial problems

that counted the number of possibilities in a situation and evaluated their

probability. This subject was studied in the seventeenth century, when com-

binatorial questions arose in the study of gambling games. Combinatorial

approach to problem solving appears in the works of leading mathematicians

such as Fibonacci, Pascal, Fermat and Euler. In modern times, the works of

J. J. Sylvester (late 19th century) and Percy MacMahon (early 20th century)

laid the foundation for enumerative and algebraic combinatorics. In the sec-

ond half of 20th century, combinatorics enjoyed a rapid growth. The growth

was spurred by new connections and applications to other fields, ranging

from algebra to probability, from functional analysis to number theory, etc.

These connections shed the boundaries between combinatorics and parts of

mathematics and theoretical computer science, but at the same time led to

64
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a partial fragmentation of the field.

Combinatorics is that part of mathematics which deals with counting and

enumeration of specified objects, patterns or designs. Counting is also re-

quired to determine whether there are enough telephone numbers or Internet

protocol addresses to meet demand. Recently, it has played a key role in

mathematical biology, especially in sequencing DNA.

4.1 Product and Sum Rule

Suppose that a password on a computer system consists of six, seven or

eight characters. Each of these characters must be a digit or a letter of the

alphabet. Each password must contain at least one digit. How many such

passwords are there?

The techniques needed to answer this question and a wide variety of other

counting problems will be introduced in this section. Here we study two basic

counting principles, the product rule and the sum rule.

4.1.1 The Product Rule

Product Rule : Suppose that a procedure can be broken down into a

sequence of two tasks. If there are n1 ways to do the first task and for each

of these ways of doing the first task, there are n2 ways to do the second task,

then there are n1 × n2 ways to do the procedure.

Note: The way to perform the second task does not depend on the way in

which the first task is performed.

Example 4.1. Chairs of an auditorium are to be labelled with an uppercase

English letter followed by a positive integer not exceeding 100. What is the

largest number of chairs that can be labelled differently?

Solution: The procedure of labelling a chair consists of two tasks, namely,
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assigning to the seat one of the 26 uppercase English letters, and then assign-

ing to it one of the 100 possible integers. The product rule shows that there

are 26 × 100 = 2600 different ways that a chair can be labelled. Therefore,

the largest number of chairs that can be labelled differently is 2600.

Example 4.2. There are 32 microcomputers in a computer center. Each

microcomputer has 24 ports. How many different ports to a microcomputer

in the center are there?

Solution: The procedure of choosing a port consists of two tasks, first pick-

ing a microcomputer and then picking a port on this microcomputer. Because

there are 32 ways to choose the microcomputer and 24 ways to choose the

port no matter which microcomputer has been selected, the product rule

shows that there are 32× 24 = 768 ports.

Example 4.3. A new company with just two employees, Anil and Neel,

rents a floor of a building with 12 offices. How many ways are there to assign

different offices to these two employees?

Solution: The procedure of assigning offices to these two employees consists

of assigning an office to Anil, which can be done in 12 ways, then assigning

an office to Neel different from the office assigned to Anil and which can be

done in 11 ways. By the product rule, there are 12×11 = 132 ways to assign

offices to these two employees.

An extended version of the product rule is often useful.

Generalized Product Rule : Suppose that a procedure is carried out

by performing the tasks T1, T2, . . . , Tm in sequence. If each task Ti, i =

1, 2, . . . ,m, can be done in ni ways, regardless of how the previous tasks

were done, then there are n1×n2×· · ·×nm ways to carry out the procedure.

Example 4.4. A certain type of car can be purchased in any of five colours,

with a manual or automatic transmission, and with any of three engine sizes.
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How many different car packages are available?

Solution: We can select colour in 5 ways, we can select transmission type

in 2 ways, we can select engine type in 3 ways. Therefore by generalized

product rule there are 5× 2× 3 = 30 car packages available.

Example 4.5. Let L be the set of Washington state license plates, three

numbers followed by three letters. How many license plates are in the set?

Solution: Each letter on license plate can be selected in 26 ways, each digit

on license plate can be selected in 10 ways. Therefore by multiplication

principle there are 26 × 26 × 26 × 10 × 10 × 10 = 17, 576, 000 Washington

state license plates.

Example 4.6. In the above example if letters and digits on license plate can

not be repeated, then find the number of possible license plates.

Solution: First letter on license plate can be selected in 26 ways. Since there

is no repetition, second letter on license plate can be selected in 25 ways, third

letter on license plate can be selected in 24 ways. First digit on license plate

can be selected in 10 ways, second digit on license plate can be selected in

9 ways, third digit on license plate can be selected in 8 ways. Therefore by

multiplication principle there are 26 × 25 × 24 × 10 × 9 × 8 = 11, 232, 000

required license plates.

Example 4.7. How many different 4-letter radio station call letters (upper

case) can be made

a) if the first letter must be a K or W and no letter may be repeated?

b) if repeats are allowed (but the first letter is a K or W).

c) How many of the 4-letter call letters (starting with K or W) with no re-

peats end in R.

Solution: a) Since first letter is K or W, there are 2 ways to select first let-

ter. Since there is no repetition, there are 25 ways to select second letter, 24

ways to select third letter, 23 ways to select fourth letter. By multiplication



CHAPTER 4. BASICS OF COUNTING 68

principle, there are 2× 25× 24× 23 = 27, 600 radio station call letters.

b) Since first letter is K or W, there are 2 ways to select first letter. Since

repetition is allowed, there are 26 ways to select second letter, 26 ways to

select third letter, 26 ways to select fourth letter. By multiplication principle,

there are 2× 26× 26× 26 = 35, 152 radio station call letters.

2 × 24 × 23 × 1

c) The last place can be filled in 1 way(with R). Since the first letter is K

or W, there are 2 ways to select first letter. Since repetition is not allowed,

there are 24 ways to select the second letter and 23 ways to select the third

letter. By multiplication principle, there are 2 × 24 × 23 × 1 radio station

call letters that can be made.

Example 4.8. How many different bit (each bit is either 0 or 1) strings of

length seven are there?

Solution: Each of the seven bits can be chosen in two ways, because each

bit is either 0 or 1. Therefore, the product rule shows there are a total of

27 = 128 different bit strings of length seven.

Theorem 4.1. (Counting Functions) The number of functions from a set

with r elements to a set with n elements is nr.

Proof. A function corresponds to a choice of one of the n elements in the

codomain for each of the r elements in the domain. Hence, by the product

rule there are n× n× . . .× n︸ ︷︷ ︸
r times

= nr functions from a set with r elements to

one with n elements.

Theorem 4.2. (Counting One-to-One Functions) The number of one-

to-one functions from a set with r elements to a set with n elements is n ×
(n− 1)× (n− 2)× ...× (n− r + 1)
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Proof. First note that when r > n there are no one-to-one functions from a

set with r elements to a set with n elements.

Now let r ≤ n. Suppose the elements in the domain are a1, a2, ..., ar. There

are n ways to choose the value of the function at a1. Because the function

is one-to-one, the value of the function at a2 can be chosen in n − 1 ways

(because the value used for a1 cannot be used again). In general, the value

of the function at ak can be chosen in n− (k− 1) ways. By the product rule,

there are n× (n− 1)× (n− 2)× ...× (n− r + 1) one-to-one functions from

a set with r elements to one with n elements.

Theorem 4.3. (Counting Subsets of a Finite Set) The number of dif-

ferent subsets of a finite set X with n elements is 2n.

Proof. Let X = {a1, a2, ..., an} be a finite set. For any subset A of X we

define bit-string SA = b1b2...bn, where bi = 0 if ai /∈ A and bi = 1 if ai ∈ A.

define function φ from power set of X to set of all bit strings of length n as

below.

φ(A) = SA for all A ⊆ X. Note that φ is one-one and onto function.

Therefore number of subsets of X is number of bit strings of length n. By

the product rule, there are 2n bit strings of length n. Hence total number of

subsets of X = 2n.

Note: The product rule is often phrased in terms of sets in the following

way.

If A1, A2, ..., Am are finite sets, then the number of elements in the Cartesian

product of these sets is the product of the number of elements in each set.

To relate this to the product rule, note that the task of choosing an element

in the Cartesian product A1×A2× . . .×Am is done by choosing an element

in A1, an element in A2, . . . , and an element in Am. By the product rule it

follows that |A1 × A2 × . . .× Am| = |A1| × |A2| × . . .× |Am|.
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4.1.2 The Sum Rule

The Sum Rule : If a task can be done either in one of n1 ways or in one

of n2 ways, where none of the set of n1 ways is the same as any of the set of

n2 ways, then there are n1 + n2 ways to do the task.

Example 4.9. Suppose there are 5 different types of burgers and 8 different

types of pizzas. How many selections does a customer have ?

Solution: There are 5 choices for the burgers and 8 choices for the pizzas.

We have to select one burger or one pizza. By addition principle there are

5 + 8 = 13 possible selections.

We can extend the sum rule to more than two tasks.

Generalized Sum Rule :

Suppose that a task can be done in one of n1 ways, in one of n2 ways,. . . , or

in one of nm ways, where none of the set of ni ways of doing the task is the

same as any of the set of nj ways, for all pairs i and j with 1 ≤ i < j ≤ m.

Then the number of ways to do the task is n1 + n2 + . . .+ nm.

Example 4.10. Suppose that either a member of the mathematics faculty

or a student who is a mathematics major is chosen as a representative to a

university committee. How many different choices are there for this represen-

tative if there are 37 members of the mathematics faculty and 83 mathematics

majors and no one is both a faculty member and a student?

Solution: There are 37 ways to choose a member of the mathematics fac-

ulty and there are 83 ways to choose a student who is a mathematics major.

Choosing a member of mathematics faculty is never same as choosing a stu-

dent who is a mathematics major because no one is both a faculty member

and a student. By the sum rule it follows that there are 37 + 83 = 120

possible ways to pick this representative.

Example 4.11. A student can choose a project from one of three lists. The

three lists contain 23, 15, and 19 possible projects, respectively. No project
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is in more than one list. How many possible projects are there to choose

from?

Solution: The student can choose a project by selecting a project from the

first list, the second list, or the third list. Because no project is in more than

one list, by the sum rule there are 23+15+19 = 57 ways to choose a project.

Example 4.12. Each user on a computer system has a password, which is

six to eight characters long, where each character is an uppercase letter or

a digit. Each password must contain at least one digit. How many possible

passwords are there?

Solution: Let P be the total number of possible passwords, and let P6, P7,

and P8 denote the number of possible passwords of length 6, 7, and 8, respec-

tively. By the sum rule, P = P6 +P7 +P8. We will now find P6, P7, and P8.

Finding P6 directly is difficult. To find P6 it is easier to find the number of

strings of uppercase letters and digits that are six characters long, including

those with no digits, and subtract from this the number of strings with no

digits. By the product rule, the number of strings of six characters is 366,

and the number of strings with no digits is 266. Hence,

P6 = 366 − 266 = 2, 176, 782, 336− 308, 915, 776 = 1, 867, 866, 560. Similarly,

we have P7 = 367−267 = 78, 364, 164, 096−8, 031, 810, 176 = 70, 332, 353, 920

and P8 = 368−268 = 2, 821, 109, 907, 456−208, 827, 064, 576 = 2, 612, 282, 842, 880.

Consequently, P = P6 + P7 + P8 = 2, 684, 483, 063, 360.

4.2 The Division Rule

We have introduced the product and sum rules for counting. You may wonder

whether there is also a division rule for counting. In fact, there is such a rule,

which can be useful when solving certain types of enumeration problems.

The Division Rule : There are
n

d
ways to do a task if it can be done using

a procedure that can be carried out in n ways, and for every way w, exactly
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d of the n ways correspond to way w.

We can restate the division rule in terms of sets: If the finite set A is the

union of n pairwise disjoint subsets each with d elements, then n =
|A|
d

.

We can also formulate the division rule in terms of functions: If f is a function

from A to B where A and B are finite sets, and that for every value y ∈ B
there are exactly d values x ∈ A such that f(x) = y (in which case, we say

that f is d -to-one), then |B| = |A|
d

.

Example 4.13. How many different ways are there to seat four people

around a circular table, where two seatings are considered the same when

each person has the same left neighbor and the same right neighbor?

Solution: We arbitrarily select a seat at the table and label it seat 1. We

number the rest of the seats in numerical order, proceeding clockwise around

the table. Note that there are four ways to select the person for seat 1, three

ways to select the person for seat 2, two ways to select the person for seat 3,

and one way to select the person for seat 4. Thus, there are 4! = 24 ways to

order the given four people for these seats. However, each of the four choices

for seat 1 leads to the same arrangement, as we distinguish two arrangements

only when one of the people has a different immediate left or immediate right

neighbor. Because there are four ways to choose the person for seat 1, by the

division rule there are
24

4
= 6 different seating arrangements of four people

around the circular table.

Exercises

1. There are 18 mathematics majors and 325 computer science majors at

a college.

a) In how many ways can two representatives be picked so that one is

a mathematics major and the other is a computer science major?

b) In how many ways can one representative be picked who is either a
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mathematics major or a computer science major?

2. A multiple-choice test contains 10 questions. There are four possible

answers for each question.

a) In how many ways can a student answer the questions on the test if

the student answers every question?

b) In how many ways can a student answer the questions on the test if

the student can leave answers blank?

3. Six different airlines fly from Chennai to Mumbai and seven fly from

Mumbai to Delhi. How many different pairs of airlines can you choose

on which to book a trip from Chennai to Delhi via Mumbai, when

you pick an airline for the flight to Mumbai and an airline for the

continuation flight to Delhi?

4. How many different three-letter initials can people have?

5. How many different three-letter initials are there that begin with an

A?

6. How many bit strings with length not exceeding n, where n is a positive

integer, consist entirely of 1′s, not counting the empty string?

7. How many strings of five ASCII characters contain the character ‘a’

at least once? [Note: There are 128 different ASCII characters.]

8. How many 6-element RNA sequences(A,C,G,U sequences)

a) do not contain U?

b) end with GU?

c) start with C?

d) contain only A or U?
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9. How many positive integers between 100 and 999 inclusive

a) are divisible by 7?

b) are odd?

c) have the same three decimal digits?

d) are not divisible by 4?

10. How many strings of three decimal digits

a) do not contain the same digit three times?

b) begin with an odd digit?

c) have exactly two digits that are 4′s?

11. A committee is formed consisting of one representative from each of the

50 states in the United States, where the representative from a state

is either the governor or one of the two senators from that state. How

many ways are there to form this committee?

12. How many license plates can be made using either two uppercase En-

glish letters followed by four digits or two digits followed by four up-

percase English letters?

13. How many license plates can be made using either two or three upper-

case English letters followed by either two or three digits?

14. How many strings of eight English letters are there

a) that contain no vowels, if letters can be repeated?

b) that contain no vowels, if letters cannot be repeated?

c) that start with vowel, if letters can be repeated?

d) that start with a vowel, if letters cannot be repeated?

15. How many one-to-one functions are there from a set with five elements

to sets with the following number of elements?

a) 4 b) 5 c) 6 d) 7
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Hints and Solutions

1. a) 5850 b) 343

2. a) 410 b) 510

3. 42

4. 263

5. 676

6. n+ 1 (counting the empty string)

7. 1,321,368,961

8. a) 729 b) 256 c) 1024 d) 64

9. a) 128 b) 450 c) 9 d) 675

10. a) 990 b) 500 c) 27

11. 350

12. 52,457,600

13. 20,077,200

14. a) 37,822,859,361 b) 8,204,716,800

c) 40,159,050, 880 d) 12,113,640,000

15. a) 0 b) 120 c) 720 d) 2520
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4.3 Permutations and Combinations of Dis-

tinguishable Objects

In this section we shall extend the sum and product rule studied in the

previous section. Given a set of objects the problems involving arrangement

of a subset according to some specification or selecting a subset as per given

specification shall be discussed in this section.

Consider the following problems:

1. In how many ways can we arrange 4 out of 7 students for a photograph?

2. In how many ways can we form a committee of 4 out of 5 students?

In the above two problems one may observe that in the first problem we have

to find the number of ways to arrange a specified number of distinguishable

elements(in this case students to stand in a row for a photograph) of a set

of a particular size (4 out of 7), where the order of these elements matters.

We can solve the second problem by finding the number of ways to select

a particular number of elements(in this case students to form a committee)

from a set of a particular size (4 out of 5), where the order of the elements

selected does not matter. Many counting problems involve these two basic

ideas i.e. the idea of arrangement/selection.

4.3.1 Permutations without Repetition

Let us begin by solving the first problem.

Example 4.14. In how many ways can we arrange 4 out of the 7 students

for a photograph?

Solution: We note that the order in which we select the students matters.
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Let us begin by placing the students from left to right in a line for a photo-

graph.

7 × 6 × 5 × 4

There are seven ways to select the first student to stand at the leftmost

position of the line. Once this student has been selected, then there are six

ways to select the second student in the line. After the first and second

student have been selected, there are five ways to select the third student

in the line and then 4 ways to select the fourth student who will be in the

rightmost position. By the product rule, there are 7× 6× 5× 4 = 840 ways

to select four students from a group of seven students to stand in a line for

a photograph.

In case we had to arrange all the seven students in a line for a photograph

the leftmost position would have been filled in 7 ways, the second in 6 ways,

the third in 5 ways, the fourth in 4 ways, the fifth in 3 ways, the sixth in 2

ways and the last in 1 way. So by the product rule the number of ways for 7

students to stand in a line for a photograph would be 7×6×5×4×3×2×1 = 7!

ways.

The above example illustrates how ordered arrangements of distinct objects

can be counted. This leads to the idea of permutation.

Definition 4.1. A permutation of a set of distinct objects is an ordered

arrangement of these objects.

We also are interested in ordered arrangements of some of the elements

of a set.

Definition 4.2. An ordered arrangement of r elements of a set is called an

r-permutation.

Remark 4.1. Unless specifically mentioned, a permutation will always mean

a linear permutation throughout this book.
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Example 4.15. Let S = {1, 2, 3}. The ordered arrangement (2, 1, 3) is a

permutation of S. The ordered arrangement (2, 3) is a 2-permutation of S.

Remark 4.2. An n-permutation of set S with n elements is simply referred

to as a permutation of set S.

The number of r-permutations of a set with n elements is denoted by P (n, r).

Example 4.16. Let S = {a, b, c}. Find all the 2-permutations of S.

Solution: The 2-permutations of S are the ordered arrangements (a, b);

(b, a); (a, c); (c, a); (b, c) and (c, b). There are exactly six 2-permutations of

the set S. In fact there are always exactly six 2-permutations of a set with

three elements since there are three ways to choose the first element of the

arrangement and there are two ways to choose the second element of the

arrangement, because it must be different from the first element. Hence, by

the product rule, we see that P (3, 2) = 3× 2 = 6.

We now use the product rule to find a formula for P (n, r) whenever n

and r are positive integers with 1 ≤ r ≤ n.

Theorem 4.4. If n is a positive integer and r is an integer with 1 ≤ r ≤ n,

then the number of r-permutations of a set with n distinct elements is

P (n, r) = n(n− 1)(n− 2) · · · (n− r + 1).

Proof: We will use the product rule to prove the formula. The first element of

the permutation can be chosen in n ways since there are n distinct elements in

the set. There are n−1 ways to choose the second element of the permutation,

because there are n−1 elements left in the set after using the element picked

for the first position. Similarly, there are n − 2 ways to choose the third

element, and so on, until there are exactly n − (r − 1) = n − r + 1 ways

to choose the rth element. Consequently, by the product rule, there are

n(n− 1)(n− 2) · · · (n− r + 1) r- permutations of the set.
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Note that P (n, 0) = 1 whenever n is a nonnegative integer because there is

exactly one way to order zero elements. That is, there is exactly one list with

no elements in it, namely the empty list.

We now state a useful corollary of the above theorem.

Corollary 4.4.1. If n and r are integers with 0 ≤ r ≤ n, then

P (n, r) =
n!

(n− r)!
.

Proof: When n and r are integers with 1 ≤ r ≤ n, then by Theorem 4.4 we

have

P (n, r) = n(n− 1)(n− 2) · · · (n− r + 1). (4.1)

By multiplying and dividing RHS of equation (4.1) by (n− r)! we get,

P (n, r) =
n!

(n− r)!
.

Also since

P (n, 0) =
n!

(n− 0)!
=
n!

n!
= 1.

whenever n is a nonnegative integer, we see that the formula

P (n, r) =
n!

(n− r)!

also holds when r = 0.

Note that if n is a positive integer then P (n, n) = n!

Let us now look at a few more examples:

Example 4.17. How many ways are there to select a captain and a vice

captain from 15 members of a cricket team?

Solution: Because it matters who becomes the captain and who becomes

the vice-captain, the number of ways to pick the captain and vice-captain is

the number of ordered selections of two elements from a set of 15 elements,

that is, the number of 2-permutations of a set of 15 elements. Consequently,

the answer is P (15, 2) = 15× 14 = 210.
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Example 4.18. Suppose that there are eight runners in a race. How many

ways are there to award a gold medal(to the runner finishing the race first),

a silver and a bronze medal(to the runners finishing second and third respec-

tively) if all possible outcomes of the race can occur and there are no ties?

Solution: The number of different ways to award the medals is the number

of 3-permutations of a set with eight elements. Hence, there are P (8, 3) =

8× 7× 6 = 336 possible ways to award the medals.

Example 4.19. Suppose that Sachin has to visit eight different cities. He

must begin his trip in a specified city, but later he can visit the other seven

cities in any order he wishes. How many possible ways are there for Sachin

to visit these cities?

Solution: The number of ways for Sachin to visit eight different cities start-

ing from a specified city is the number of permutations of seven elements,

because the first city is determined, but the remaining seven can be ordered

in any way. Consequently, there are 7! = 7 × 6 × 5 × 4 × 3 × 2 × 1 = 5040

ways for Sachin to visit the eight cities.

Example 4.20. How many permutations of the letters ABCDEFG contain

the string ABC(the order of ABC should not be changed)?

Solution: Because the letters ABC must occur as a block, we can find the

answer by finding the number of permutations of the five objects, namely,

the block ABC and the individual letters D, E, F and G. Because these

five objects can occur in any order, there are 5! = 120 permutations of the

letters ABCDEFG in which ABC occurs as a block.

A slight variation of the above problem is:

Example 4.21. How many permutations of the letters ABCDEFG contain

the letters ABC together in some order?

Solution: 5!× 3!.
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4.3.2 Combinations without Repetition

We now turn our attention to counting unordered selections of r objects

from n distinct objects where repetition is not allowed. We begin by solving

a question posed at the beginning of this section.

Example 4.22. In how many ways can we form a committee of 4 out of 5

students?

Solution: Let us name the five students as A,B,C,D and E. Choosing four

students is the same as not choosing one of the five students, as the remaining

four students form the committee. The committee {B,C,D,E} corresponds

to not choosing student A. Thus there are five ways to choose the four stu-

dents to form the committee, where the order in which these students are

chosen does not matter.

You may observe that we have found the number of subsets with four ele-

ments(in this case students) from the set containing the five elements(students).

We shall quickly discuss one more illustration before we take up the gen-

eral case of the number of ways to select r objects out of n objects.

Example 4.23. How many ways are there to select two out of five tennis

players for a demonstration match?

Solution: Let the five players be named A,B,C,D and E. If two players are

to be selected and the order mattered, then the answer would be P (5, 2) =

5×4 = 20. But in this problem the order does not matter. Each selection of a

pair of players, say, A and B, would have been counted in the 20 above, once

as AB and once again as BA, that is, two times. The number 2 is actually

the number of permutations of the two letters(or players) among themselves.

So the number of 2 player selections would be 20/2 = 10.

We shall see that many counting problems can be solved by finding the

number of subsets of a particular size of a set with n-elements, where n is a

non-negative integer.
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Definition 4.3. An r-combination of elements of a set is an unordered

selection of r elements from the set.

Remark 4.3. Thus, an r-combination is simply a r-subset of the given n-set

(k−set is a set containing k elements).

This refers to an r-combination of n elements where repetition of elements

is not allowed.

Example 4.24. Let S be the set {1, 2, 3}. Then {1, 3} is a 2-combination

from S. (Note that {3, 1} is the same 2-combination as {1, 3}, because the

order in which the elements of a set are listed does not matter.) In fact

{1, 2}, {1, 3} and {2, 3} are the only possible 2-combinations of the set S.

The number of r-combinations of a set with n distinct elements is denoted

by C(n, r).

Note that C(n, r) is also denoted by
(n
r

)
and is called a binomial coefficient.

Example 4.25. The 2-combinations of {a, b, c, d} are the six subsets {a, b},
{a, c}, {a, d}, {b, c}, {b, d} and {c, d}. From this we see that C(4, 2) = 6.

We can determine the number of r-combinations of a set with n elements

using the formula for the number of r-permutations of a set.

Note that the r-permutations of a set can be obtained by first forming r-

combinations and then ordering the elements in these combinations. The

proof of Theorem 4.5, which gives the value of C(n, r), is based on this

observation.

Theorem 4.5. The number of r-combinations of a set with n elements, where

n is a nonnegative integer and r is an integer with 0 ≤ r ≤ n, equals

C(n, r) =
n!

r!(n− r)!
.
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Proof: The different r-permutations of a set with n elements can be ob-

tained by forming the C(n, r) r-combinations of the set, and then ordering

the elements in each r-combination, which can be done in P (r, r) ways. Con-

sequently, by the product rule, P (n, r) = C(n, r)×P (r, r). This implies that

C(n, r) =
P (n, r)

P (r, r)
=
n!/(n− r)!
r!/(r − r)!

=
n!

r! (n− r)!

as 0! = 1. For computing C(n, r), we first cancel out (n − r)! from the

numerator and denominator of the expression for C(n, r) in Theorem 4.5.

Thus we obtain,

C(n, r) =
n!

r! (n− r)!
=
n(n− 1) · · · (n− (r − 1))

r!
=
n(n− 1) · · · (n− r + 1)

r!
.

We now obtain a very useful combinatorial identity as a consequence of The-

orem 4.5.

Corollary 4.5.1. Let n and r be nonnegative integers with r ≤ n. Then

C(n, r) = C(n, n− r).

Proof: From Theorem 4.5 we get

C(n, r) =
n!

r!(n− r)!
.

and

C(n, n− r) =
n!

(n− r)!(n− (n− r))!
=

n!

(n− r)!r!
.

Thus we get, C(n, r) = C(n, n− r).
Instead of algebraic manipulation, a combinatorial proof of Corollary 4.5.1

can also be given.

What is a Combinatorial Proof?

A combinatorial proof of an identity is a proof that uses counting arguments

to prove that both sides of the identity count the same objects but in different

ways or a proof that is based on showing that there is a bijection between
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the sets of objects counted by the two sides of the identity. These two types

of proofs are called double counting proofs and bijective proofs, respectively.

A Double Counting proof:

By definition, the number of subsets of S with r elements equals C(n, r). But

each subset A of S is also determined by specifying which elements are not in

A, and so are in A. Because the complement of a subset of S with r elements

has n − r elements, there are also C(n, n − r) subsets of S with r elements.

It follows that C(n, r) = C(n, n− r).
A bijective proof:

Suppose that S is a set with n elements. The function that maps a subset

A of S to A is a bijection between subsets of S with r elements and subsets

with n−r elements. The identity C(n, r) = C(n, n−r) follows because when

there is a bijection between two finite sets, the two sets must have the same

number of elements.

Example 4.26. How many ways are there to select five players for an inter

college basket ball match from a 10-member team?

Solution: It is the number of 5−combinations of a set with 10 elements. By

Theorem 4.5, the number of such combinations is

C(10, 5) =
10× 9× · · · × (10− 5 + 1)

5!
=

10× 9× 8× 7× 6

120
= 252.

Example 4.27. A group of 30 astronauts has been trained to go on the first

mission to Mars. In how many ways can a crew of six people be selected to

go on this mission (assuming that all crew members have equal chance)?

Solution: The number of ways to select a crew of six from the 30 trained

astronauts is the number of 6-combinations of a set with 30 elements, because

the order in which these people are chosen does not matter. By Theorem

4.5, the number of such combinations is

C(30, 6) =
30× 29× 28× 27× 26× 25

6!
= 593, 775.
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Example 4.28. Suppose that there are 9 faculty members in the mathemat-

ics department and 11 in the computer science department of a college. How

many ways are there to select a committee to develop a discrete mathematics

course at the college if the committee is to consist of three faculty members

from the mathematics department and four from the computer science de-

partment?

Solution: By the product rule, the answer is the product of the number of 3-

combinations of a set with nine elements and the number of 4−combinations

of a set with 11 elements. By Theorem 4.5, the number of ways to select the

committee is

C(9, 3) · C(11, 4) =
9!

3!6!
× 11!

4!7!
.

4.3.3 Permutations with Repetition Allowed

Consider the following problem:

Example 4.29. How many 3 digit numbers can be formed using the digits

1, 3, 5, 7, 9, where we are allowed to repeat the digits?

Solution: To solve this problem, 3 places have to be filled:

There are 5 digits which can be used to fill the first place. Because repetition

is allowed, the same 5 digits can be used to fill the second place and also the

last place. Thus

5× 5× 5 = 125

different numbers can be formed.

Example 4.30. Consider the problem of finding the number of strings of

length 7 that can be formed using the lowercase letters of the English alpha-

bet?
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Solution: Since there are 26 lowercase letters in the English alphabet, and

because each letter can be used repeatedly, we see that there are 267 strings

of lowercase English letters of length 7.

Let us now obtain the general result.

Theorem 4.6. The number of r-permutations of a set of n objects with

repetition allowed is nr.

Proof: There are n ways to select an element from the set for each of the r

positions in the r-permutation when repetition is allowed, because for each

choice all n objects are available. Thus, using product rule there are nr

r-permutations when repetition is allowed.

Order? Repetition? Formula

Yes(Permutation) No P (n, r)

No(Combination) No C(n, r)

Yes(Permutation) Yes nr

Note: We can also have an r-combination of n items with repetition allowed.

But this concept is more involved than that of permutations with repetition

allowed and we shall deal with it in the next chapter.

Let us summarize the results studied in this section in a table:

Exercises

1. List all the permutations of {a, b, c}.

2. How many permutations of {a, b, c, d, e, f} end with a?

3. Find the number of 5−permutations of a set with nine elements.
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4. In how many different orders can five runners finish a race if no ties are

allowed?

5. A group contains n men and n women. How many ways are there to

arrange these people in a row if the men and women alternate?

6. In how many ways can a set of five letters be selected from the English

alphabet?

7. How many subsets with an odd number of elements does a set with 10

elements have?

8. How many subsets with more than two elements does a set with 100

elements have?

9. A coin is flipped 10 times where each flip comes up either heads or

tails. How many possible outcomes

a) are there in total?

b) contain exactly two heads?

c) contain at most three tails?

d) contain the same number of heads and tails?

10. How many permutations of the letters ABCDEFG contain

a) the string BCD?

b) the string CFGA?

c) the strings BA and GF?

d) the strings ABC and DE?

e) the strings ABC and CDE?

f ) the strings CBA and BED?

11. How many ways are there for eight men and five women to stand in

a line so that no two women stand next to each other? [Hint: First

position the men and then consider possible positions for the women.]
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12. The English alphabet contains 21 consonants and five vowels. How

many strings of six lowercase letters of the English alphabet contain

a) exactly one vowel?

b) exactly two vowels?

c) at least one vowel?

d) at least two vowels?

13. Suppose that a department contains 10 men and 15 women. How many

ways are there to form a committee with six members if it must have

the same number of men and women?

Hints and Solutions

1. {a, b, c}, {a, c, b}, {b, a, c}, {b, c, a}, {c, a, b}, {c, b, a}

2. Ans: 120.

The first five letters can be in any order and the last letter is necessarily

a.

3. P (9, 5).

4. 5!=120

5. First place the men in n! ways. The n women can then be placed either

starting from left of the first man or from the right of the first man.

Also consider the arrangements of the women among themselves.

Ans: 2× n!× n!

6. C(26, 5) = 65, 780.

7. C(10, 1) + C(10, 3) + C(10, 5) + C(10, 7) + C(10, 9) = 29

8. C(100, 3)+C(100, 4)+. . .+C(100, 100) = 2100−[C(100, 0)+C(100, 1)+

C(100, 2)] = 2100 − 5051.
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9. a) 210= 1024

b) C(10,2)= 45

c) C(10,0)+C(10,1)+C(10,2)+C(10,3)=176

d) C(10,5)=252.

10. a) 120 b) 24 c) 120 d) 24 e) 6 f) 0

11. 8!× 9× 8× 7× 6× 5

12. a) 122,523,030

b) 72,930,375

c) 223,149,655

d) 100,626,625

13. 54,600



Chapter 5

Generalized Permutations and

Combinations

Introduction

In the previous chapter, in case of distinguishable objects, we saw how to

count combinations when repetition of objects was not allowed. To get the

formula for C(n, r), we used the notion of permutation where repetition of

objects was not allowed (P (n, r)). We also saw how to count permutations

when repetition of objects is allowed. The objects considered were distin-

guishable.

In section 5.2 of this chapter, we shall consider the case of combinations,

but we will allow repetitions to occur (combinations with repetition). This

will complete the matrix of counting formulae, indexed by order and rep-

etition (No-order, Yes-Repetition) (Refer to Table 4.1). In this section we

shall also deal with the number of permutations when some of the objects

are indistinguishable(identical).

In section 5.3 we shall deal with distribution problems where we have to

determine the number of ways in which the given objects can be distributed

90
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in the given boxes. The objects as well as the boxes may be distinguish-

able(distinct) or indistinguishable(identical). We find the number of ways to

distribute the given objects in given boxes in 4 different situations.

Remark 5.1. The number of 2-combinations of {a, b, c} when repetition of

letters is allowed are {a, a}; {b, b}; {c, c}; {a, b}; {a, c}; {b, c}.

5.1 Generalized Permutations and Combina-

tions

In this section we shall consider the problems of selecting objects when there

are a sufficiently large number of indistinguishable objects of different types

available for selection. For e.g., selecting 4 packets of biscuits in a shopping

mall where large number of identical packets of Parle G, Britannia Marie

Gold and Krackjack are available. A similar problem is:

Example 5.1. Suppose 3 different flavors of ice cream are available. Find

the number of ways to choose 5 ice creams where each variety can be chosen

repeatedly.

This contrasts with the counting problems discussed in the earlier chapter

where we considered combinations in which each item could be used at most

once.

Also, some counting problems involve finding the number of ways to ar-

range the elements of a multi set. A multi set is an extension of the concept

of a set. While a set can contain only one occurrence of any given element,

a multi set may contain multiple occurrences of the same element. For e.g.

S = {a, a, b, b, b, c, d, e, e} is a multi set. Consider the following problem:

Example 5.2. Find the number of ways in which the letters of the word

MISSISSIPPI can be rearranged.



CHAPTER 5. GENERALIZED PERMUTATIONS AND COMBINATIONS92

The methods to solve both these problems shall be discussed in this sec-

tion.

5.1.1 Permutations of Multi sets.

Let us consider the problem mentioned above(Example 5.2). We have to find

the number of ways to arrange the letters of the word MISSISSIPPI in a row.

There are 4 identical I’s, 4 identical S’s, 2 identical P’s and one M. Here we

have to fill the 11 places shown below.

—,—,—,—,—,—,—,—,—,—,—

For placing the I’s, 4 of the places can be chosen in C(11,4) ways and the S’s

can then be placed in 4 out of the remaining 7 places in C(7,4) ways, the P’s

can be placed in C(3,2) ways and finally M in the remaining position. Thus

the number of arrangements of the word MISSISSIPPI is

C(11, 4)×C(7, 4)×C(3, 2)×C(1, 1) =
11!

4!7!
× 7!

4!3!
× 3!

2!1!
× 1!

1!0!
=

11!

4!4!2!1!
.

In general we have,

Theorem 5.1. The number of different permutations of n objects, where

there are n1 identical objects of type 1, n2 identical objects of type 2,. . ., and

nk identical objects of type k, is

n!

n1!n2! · · ·nk!

Proof: To determine the number of permutations, first note that the n1

objects of type 1 can be placed among the n positions in C(n, n1) ways,

leaving n− n1 positions free. Then the n2 objects of type 2 can be placed in

C(n− n1, n2) ways, leaving n− n1 − n2 positions free. Continue placing the

n3 objects of type 3,. . . ,nk−1 objects of type k − 1, until at the last stage,
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nk objects of type k can be placed in C(n− n1 − n2 − . . .− nk−1, nk) ways.

Hence, by the product rule, the total number of different permutations is

C(n, n1) · C(n− n1, n2) · · ·C(n− n1 − . . .− nk−1, nk)

=
n!

n1!(n− n1)!

(n− n1)!

n2!(n− n1 − n2)!
. . .

(n− n1 − n2 · · · − nk−1)!

nk!0!

=
n!

n1!n2! . . . nk!

5.1.2 Combinations with Repetition

Consider these examples of combinations with repetition of elements allowed.

Example 5.3. How many ways are there to select four fruits from a bag

containing apples, oranges, and mangoes if the order in which the fruits are

selected does not matter, only the type of fruit and not the individual fruit

matters, and there are at least four fruits of each type in the bag? We also

assume all the fruits of the same type are identical.

Solution: To solve this problem we list all the ways possible to select the

fruit. There are 15 ways: 4 apples; 4 oranges; 4 mangoes; 3 apples and 1

orange; 3 apples and 1 mango; 3 oranges and 1 apple; 3 oranges and 1 mango;

3 mangoes and 1 apple; 3 mangoes and 1 orange; 2 apples and 2 oranges; 2

apples and 2 mangoes; 2 oranges and 2 mangoes; 2 apples, 1 orange and 1

mango; 2 oranges, 1 apple and 1 mango; 2 mangoes, 1 apple and 1 orange.

The solution is the number of 4-combinations with repetition allowed from a

three-element set, apple, orange, mango.

To solve more complex counting problems of this type, we need a general

method for counting the r-combinations of an n-element set where repetition

is allowed. Let us now illustrate a technique for the above problem, to count

the combinations(selections) with repetition allowed. Suppose that a bowl

has 3 compartments, the leftmost for placing apples, the middle one for

oranges and the rightmost for mangoes. We require two separators to make
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three compartments in the box. The stars represent the fruits. If we select

four apples it may be represented as shown below.

? ? ? ? ||

3 apples and 1 orange shall be represented as

? ? ?| ? |

Note that:

?| ? ?|?

represents the selection 1 apple, 2 oranges and 1 mango.

Every selection listed above corresponds to a unique representation of 4 stars

and 2 separators.

Thus counting the different combinations is equivalent to counting all possible

arrangements of 4 identical stars and 2 identical separators.

We have to find the number of ways to fill the 6 places shown below

—,—,—,—,—,—

with 4 identical stars and 2 identical separators. This can be done by either

selecting the places for 2 separators or 4 stars. The selection of places for the

separators can be done in C(6, 2) = 15 ways. Alternatively we could have

also selected the 4 places to place the stars. This can be done in C(6, 4) = 15

ways.

The general theorem is given below:

Theorem 5.2. There are C(n+r−1, r) = C(n+r−1, n−1) r-combinations

from a set with n elements when repetition of elements is allowed.
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Proof: Each r-combination of a set with n elements when repetition is allowed

can be represented by a list of n− 1 bars(separators) and r stars. The n− 1

bars are used to mark off n different cells, with the ith cell containing a star

for each time the ith element of the set occurs in the combination. As we

have seen in the above example, each different list containing n− 1 bars and

r stars corresponds to an r-combination of the set with n elements, when

repetition is allowed. The number of such lists is C(n − 1 + r, r), because

each list corresponds to a choice of the r positions to place the r stars from

the n− 1 + r positions that contain r stars and n− 1 bars. The number of

such lists is also equal to C(n − 1 + r, n − 1), because each list can also be

thought to correspond to a choice of the n − 1 positions to place the n − 1

bars.

Alternatively we may use theorem 5.1 to get that there are exactly

(n− 1 + r)!

r!(n− 1)!
= C(n− 1 + r, r) = C(n− 1 + r, n− 1)

different arrangements of r identical stars and n− 1 identical bars.

Example 5.4. Suppose that a cookie shop has four different kinds of cookies.

In how many different ways can six cookies be chosen? Assume that only the

type of cookie, and not the individual cookies or the order in which they are

chosen, matters.

Solution: The number of ways to choose six cookies is the number of 6-

combinations of a set with four elements(repetition allowed). From Theorem

5.2 this equals C(4 + 6 − 1, 6) = C(9, 6). Because C(9, 6) = C(9, 3) = 84,

there are 84 different ways to choose the six cookies.

Theorem 5.2 can also be used to find the number of solutions of certain

linear equations where the variables are integers subject to constraints. This

is illustrated by the next example.

Example 5.5. How many solutions does the equation x1 + x2 + x3 = 11

have, where x1, x2, and x3 are nonnegative integers?
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Solution: To count the number of solutions, we note that a solution corre-

sponds to a way of selecting 11 items from a set with three elements so that x1

items of type one, x2 items of type two, and x3 items of type three are chosen.

Hence, the number of solutions is equal to the number of 11-combinations

with repetition allowed from a set with three elements. From Theorem 5.2 it

follows that there are C(3+11−1, 11) = C(13, 11) = C(13, 2) = 78 solutions.

The number of solutions of the above equation can also be found when

the variables are subject to constraints. For instance, we can find the number

of solutions where the variables are integers with x1 > 1, x2 > 2, and x3 > 3.

A solution to the equation subject to these constraints corresponds to a

selection of 11 items with x1 items of type one, x2 items of type two, and x3

items of type three, where, there are at least two items of type one (x1 > 1),

three items of type two(x2 > 2), and four items of type three(x3 > 3). Since

x1 > 1 ⇒ x1 = 2 + y1, x2 > 2 ⇒ x2 = 3 + y2 and x3 > 3 ⇒ x3 = 4 + y3

where y1, y2, y3 are non negative integers. Thus equivalently we now have to

find the number of solutions of y1 + y2 + y3 = 11 − (2 + 3 + 4) = 2 where

y1, y2, y3 are non negative integers.

In this case n = 3 and r = 2. From Theorem 5.2 it follows that there are

C(3 + 2 − 1, 2) = C(4, 2) = 6 solutions. Thus, there are 6 solutions of the

equation subject to the given constraints.

Theorem 5.3. The number of non-negative integers solutions to x1 + x2 +

x3 + . . .+ xn = r is equal to C(n+ r − 1, r).

Proof: Generalization of the above problems.

Exercises

1. In how many different ways can five elements be selected in order from

a set with three elements when repetition is allowed?
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2. How many strings of six letters are there?

3. How many different ways are there to choose a dozen donuts from the

21 varieties at a donut shop?

4. How many solutions are there to the equation x1 + x2 + x3 + x4 = 17,

where x1, x2, x3, and x4 are nonnegative integers?

5. How many solutions are there to the equation

x1 + x2 + x3 + x4 + x5 = 21, where xi, i = 1, 2, 3, 4, 5, is a nonnegative

integer such that

a) x1 ≥ 1?

b) xi ≥ 2 for i = 1, 2, 3, 4, 5?

6. How many strings of 10 ternary digits (0, 1, or 2) are there that contain

exactly two 0’s, three 1’s, and five 2’s?

7. How many positive integers less than 1,000,000 have the sum of their

digits equal to 19?

8. How many different strings can be made from the letters in AARD-

VARK, using all the letters, if all three As must be consecutive?

Hints and Solutions

1. 243

2. 266

3. C(32, 12) = C(32, 20).

4. C(20, 3) = C(20, 17).

5. a) C(20, 4) = C(20, 16).

b) C(15, 4) = C(15, 11).
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6. 2520

7. 30,492

8. Hint: Since the 3 A’s are always together, let us call them as group G.

We have to find number of ways to arrange G,R,R,D,V,K.

Solution:
6!

2

5.2 Distributing Objects into Boxes

Many counting problems can be solved by enumerating the ways objects

can be placed into boxes (where the order these objects are placed into the

boxes does not matter). The objects can be either distinguishable(distinct),

or indistinguishable(identical). Distinguishable objects/boxes are sometimes

said to be labelled, whereas indistinguishable objects/boxes are said to be

unlabelled.

When you solve a counting problem using the model of distributing ob-

jects into boxes, you need to determine whether the objects are distinguish-

able or indistinguishable and whether the boxes are distinguishable of indis-

tinguishable. If the objects are distinguishable, it is a good idea to label

them. Similarly for the boxes. Although the context of the counting prob-

lem makes these two decisions clear, if the counting problems are sometimes

ambiguous, then in such a case it is best to state whatever assumptions you

are making and explain why the particular model you choose conforms to

your assumptions.

We will see that there are closed formulae for counting the ways to

distribute objects, distinguishable or indistinguishable, into distinguishable

boxes.
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We are not so lucky when we count the ways to distribute objects, dis-

tinguishable or indistinguishable, into indistinguishable boxes; there are no

closed formulae to use in these cases.

5.2.1 Distinguishable Objects into Distinguishable Boxes

Example 5.6. In how many ways can 10 distinguishable objects be placed

in 5 distinguishable boxes with no condition on the number of objects in any

box?

Solution: Since the objects as well as boxes are distinguishable, let us la-

bel the objects as O1, O2, . . . , O10 and the boxes as B1, B2, . . . , B5. The first

object O1 can be placed in any of the 5 boxes and the second object can

be placed in 5 ways and so on. Thus there are 510 ways to distribute 10

distinguishable objects in 5 distinguishable boxes.

Theorem 5.4. The number of ways to distribute n distinguishable objects

into k distinguishable boxes with no condition on the number of objects in

any box is kn.

Proof: Use product rule

Now consider another problem

Example 5.7. How many ways are there to distribute hands of 5 cards to

each of four players from the standard deck of 52 cards?

Solution: We will use the product rule to solve this problem. To begin, note

that the first player can be dealt 5 cards in C(52, 5) ways. The second player

can be dealt 5 cards in C(47, 5) ways, because only 47 cards are left. The

third player can be dealt 5 cards in C(42, 5) ways. Finally, the fourth player

can be dealt 5 cards in C(37, 5) ways. Hence, the total number of ways to

deal four players 5 cards each is C(52, 5)× C(47, 5)× C(42, 5)× C(37, 5).
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Theorem 5.5. The number of ways to distribute n distinguishable objects

into k distinguishable boxes so that ni objects are placed into box i, i =

1, 2, . . . , k, equals
n!

n1!n2! · · ·nk!
.

Proof: Generalization of the above problem.

5.2.2 Indistinguishable Objects into Distinguishable Boxes

Counting the number of ways of placing n indistinguishable objects into k

distinguishable boxes turns out to be the same as counting the number of

n-combinations for a set with k elements when repetitions are allowed. The

reason behind this is that there is a one-to-one correspondence between n-

combinations from a set with k elements when repetition is allowed and the

ways to place n indistinguishable balls into k distinguishable boxes. To set

up this correspondence, we put a ball in the ith bin each time the ith element

of the set is included in the n-combination.

Example 5.8. How many ways are there to place 10 indistinguishable balls

into eight distinguishable bins?

Solution: The number of ways to place 10 indistinguishable balls into eight

bins equals the number of 10-combinations from a set with eight elements

when repetition is allowed. Consequently, there are C(8 + 10 − 1, 10) =

C(17, 10) =
17!

10!7!
= 19, 448.

Theorem 5.6. There are C(k+n−1, k−1) ways to place n indistinguishable

objects into k distinguishable boxes.

5.2.3 Distinguishable Objects into Indistinguishable Boxes

Counting the ways to place n distinguishable objects into k indistinguishable

boxes is more difficult than counting the ways to place objects, distinguish-
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able or indistinguishable objects, into distinguishable boxes. We illustrate

this with an example.

Example 5.9. How many ways are there to put four distinguishable em-

ployees into three indistinguishable offices, when each office can contain any

number of employees?

Solution: We will solve this problem by enumerating all the ways these

employees can be placed into the offices.We represent the four employees by

A, B, C, and D. First, we note that we can distribute employees so that all

four are put into one office, three are put into one office and a fourth is put

into a second office, two employees are put into one office and two put into a

second office, and finally, two are put into one office, and one each put into

the other two offices.

Each way to distribute these employees to these offices can be represented

by a way to partition the elements A, B, C, and D into disjoint subsets.

We can put all four employees into one office in exactly one way, repre-

sented by {{A,B,C,D}}. We can put three employees into one office and

the fourth employee into a different office in exactly four ways, represented by

{{A,B,C}, {D}}, {{A,B,D}, {C}}, {{A,C,D}, {B}}, and {{B,C,D}, {A}}.
We can put two employees into one office and two into a second office in ex-

actly three ways, represented by {{A,B}, {C,D}}, {{A,C}, {B,D}}, and

{{A,D}, {B,C}}. Finally, we can put two employees into one office, and

one each into each of the remaining two offices in six ways, represented by

{{A,B}, {C}, {D}}, {{A,C}, {B}, {D}}, {{A,D}, {B}, {C}},
{{B,C}, {A}, {D}}, {{B,D}}, {A}, {C}},and{{C,D}, {A}, {B}}. Counting

all the possibilities, we find that there are 14 ways to put four different em-

ployees into three indistinguishable offices. Another way to look at this prob-

lem is to look at the number of offices into which we put employees. Note

that there are six ways to put four different employees into three indistin-

guishable offices so that no office is empty, seven ways to put four different
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employees into two indistinguishable offices so that no office is empty, and

one way to put four employees into one office so that it is not empty.

There is no simple closed formula for the number of ways to distribute

n distinguishable objects into j indistinguishable boxes. However, there is

a formula involving a summation, which we will now describe. Let S(n, j)

denote the number of ways to distribute n distinguishable objects into j

indistinguishable boxes so that no box is empty. The numbers S(n, j) are

called Stirling numbers of the second kind. For instance, Example 5.9 shows

that S(4, 3) = 6, S(4, 2) = 7, and S(4, 1) = 1. We see that the number of ways

to distribute n distinguishable objects into k indistinguishable boxes (where

the number of boxes that are nonempty equals k, k − 1, . . . , 2, or 1) equals
k∑

j=1

S(n, j). For instance, following the reasoning in Example 5.9, the number

of ways to distribute four distinguishable objects into three indistinguishable

boxes equals S(4, 1) + S(4, 2) + S(4, 3) = 1 + 7 + 6 = 14.

Using Inclusion Exclusion Principle it can be shown that

Theorem 5.7.

S(n, j) =
1

j!

j−1∑
i=0

(−1)i
(
j

i

)
(j − i)n

(Without Proof)

5.2.4 Indistinguishable Objects into Indistinguishable

Boxes

Some counting problems can be solved by determining the number of ways

to distribute indistinguishable objects into indistinguishable boxes. We illus-

trate this principle with an example.
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Example 5.10. How many ways are there to pack six copies of the same

book into four indistinguishable boxes, where a box can contain at most six

books?

Solution: We will enumerate all ways to pack the books. For each way to

pack the books, we will list the number of books in the box with the largest

number of books, followed by the numbers of books in each box containing

at least one book, in order of decreasing number of books in a box. The ways

we can pack the books are

6

5, 1

4, 2

4, 1, 1

3, 3

3, 2, 1

3, 1, 1, 1

2, 2, 2

2, 2, 1, 1.

For example, (4, 1, 1) indicates that one box contains four books, a second

box contains a single book, and a third box contains a single book (and the

fourth box is empty). We conclude that there are nine allowable ways to

pack the books.

Observe that distributing n indistinguishable objects into k indistinguish-

able boxes is the same as writing n as the sum of at most k positive integers

in non increasing order. If a1 + a2 + . . . + aj = n, where a1, a2, . . . , aj are

positive integers with a1 ≥ a2 . . . ≥ aj, we say that a1, a2, . . . , aj is a parti-

tion of the positive integer n into j positive integers. We see that if pk(n) is

the number of partitions of n into at most k positive integers, then there are

pk(n) ways to distribute n indistinguishable objects into k indistinguishable

boxes. No simple closed formula exists for this number.
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Let us summarize the results of this section in the table given below:

Table 5.1: Number of Ways of Distribution of n objects into k boxes

Objects(n) Boxes (k) Distribution without any condition

Distinguishable Distinguishable kn

Indistinguishable Distinguishable C(k + n− 1, k − 1)

Distinguishable Indistinguishable
k∑

j=1

S(n, j)

Indistinguishable Indistinguishable pk(n)

Exercises

1. How many ways are there to distribute six different coloured caps to

10 children?

2. How many ways are there to distribute 10 different books among 5

children such that each child gets at least one book?

3. How many ways are there to distribute six indistinguishable balls into

nine distinguishable bins?

4. How many ways are there to distribute 12 indistinguishable balls into

six distinguishable boxes if each box contains at least one ball?

5. How many ways are there to distribute 12 distinguishable objects into

six distinguishable boxes so that two objects are placed in each box?

6. A student has three mangoes, two papayas, and two kiwi fruits. If

the student eats one piece of fruit each day, and only the type of fruit

matters, in how many different ways can these fruits be consumed?
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7. How many ways are there to distribute five distinguishable objects into

two indistinguishable boxes?

8. How many ways are there to distribute five indistinguishable objects

into 5 indistinguishable boxes?

9. How many ways are there to distribute seven indistinguishable objects

into four bins such that each bin contains at least one object?

Hints and Solutions

1. 106

2. P (10, 5)

3. It is the number of solutions of x1 + x2 + . . . + x9 = 6 where xi
′s are

non-negative integers. Its the number of ways to arrange 6 ? and 8 |′s
in a row. Ans: C(14, 6) = C(14, 8).

4. C(11, 5) = C(11, 6)

5.
12!

26
= 7, 484, 400.

6. 210

7. S(5, 2) + S(5, 1)

8. p5(5)

9. i) C(6, 3) if the bins are distinguishable

ii) 3 ways if the bins are indistinguishable.



Chapter 6

The Inclusion and Exclusion

Principle

Introduction

The principle of Inclusion and Exclusion is doubtless very old; its origin is

probably untraceable. The principle of Inclusion and Exclusion is sometimes

referred to as “Poincare’s Theorem”. Sylvester and da Silva are the two

mathematicians associated with the combinatorial form of the principle.

The principle of Inclusion and Exclusion is a way of thinking about combining

sets with overlapping elements.

6.1 The Subtraction Rule

If a task can be done in either n1 ways or n2 ways, then the number of ways

to do the task is n1 + n2 minus the number of ways to do the task that are

common to the two different ways.

The subtraction rule is also known as the principle of inclusion-exclusion,

especially when it is used to count the number of elements in the union of

106
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two sets. Suppose that A1 and A2 are sets. Then, there are |A1| ways to

select an element from A1 and |A2| ways to select an element from A2. The

number of ways to select an element from A1 or from A2, that is, the number

of ways to select an element from their union, is the sum of the number

of ways to select an element from A1 and the number of ways to select an

element from A2, minus the number of ways to select an element that is in

both A1 and A2. Because there are |A1 ∪ A2| ways to select an element in

either A1 or in A2, and |A1 ∩A2| ways to select an element common to both

sets, we have |A1 ∪ A2| = |A1|+ |A2| − |A1 ∩ A2|.

Example 6.1. How many bit strings of length eight either start with a 1 bit

or end with the two bits 00?

Solution: We can construct a bit string of length eight that either starts

with a 1 bit or ends with the two bits 00, by constructing a bit string of

length eight beginning with a 1 bit or by constructing a bit string of length

eight that ends with the two bits 00. We can construct a bit string of length

eight that begins with a 1 in 27 = 128 ways. This follows by the product

rule, because the first bit can be chosen in only one way and each of the other

seven bits can be chosen in two ways. Similarly, we can construct a bit string

of length eight ending with the two bits 00, in 26 = 64 ways. This follows

by the product rule, because each of the first six bits can be chosen in two

ways and the last two bits can be chosen in only one way. Some of the ways
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to construct a bit string of length eight starting with a 1 are the same as

the ways to construct a bit string of length eight that ends with the two bits

00. There are 25 = 32 ways to construct such a string. This follows by the

product rule, because the first bit can be chosen in only one way, each of the

second through the sixth bits can be chosen in two ways, and the last two

bits can be chosen in one way. Consequently, the number of bit strings of

length eight that begin with a 1 or end with a 00, which equals the number

of ways to construct a bit string of length eight that begins with a 1 or that

ends with 00, equals 128 + 64− 32 = 160.

Example 6.2. A computer company receives 350 applications from gradu-

ates for a job. Suppose that 220 of these applicants majored in computer

science, 147 majored in business, and 51 majored both in computer science

and in business. How many of these applicants majored neither in computer

science nor in business?

Solution: To find the number of these applicants who majored neither in

computer science nor in business, we can subtract the number of students

who majored either in computer science or in business (or both) from the

total number of applicants. Let A1 be the set of students who majored in

computer science and A2 the set of students who majored in business. Then

A1 ∪ A2 is the set of students who majored in computer science or busi-

ness (or both), and A1 ∩ A2 is the set of students who majored both in

computer science and in business. By the subtraction rule the number of

students who majored either in computer science or in business (or both)

equals |A1 ∪ A2| = |A1| + |A2| − |A1 ∩ A2| = 220 + 147 − 51 = 316. We

conclude that 350− 316 = 34 of the applicants majored neither in computer

science nor in business.
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6.2 The Principle of Inclusion and Exclusion

The principle of Inclusion and Exclusion, hereafter called PIE, gives a formula

for the size of the union of n finite sets. Usually the universe is finite too. It

is a generalization of the familiar formulas |A∪B| = |A|+ |B| − |A∩B| and

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.

Theorem 6.1. If P1, P2, . . . , Pn be finite sets, then

|P1∪P2∪ . . .∪Pn| = |P1|+ |P2|+ . . .+ |Pn|− |P1∩P2|− |P1∩P3|− . . . |Pn−1∩
Pn|+|P1∩P2∩P3|+|P1∩P2∩P4|+. . .+|Pn−2∩Pn−1∩Pn|−. . .+(−1)n+1|P1∩
P2 ∩ . . . ∩ Pn|
That is

|P1 ∪ P2 ∪ . . . ∪ Pn| =
∑

1≤i≤n

|Pi| −
∑

1≤i<j≤n

|Pi ∩ Pj|

+
∑

1≤i<j<k≤n

|Pi ∩ Pj ∩ Pk| − . . .+ (−1)n+1|P1 ∩ P2 ∩ ... ∩ Pn|

.
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That is, the cardinality of the union P1 ∪ P2 ∪ ... ∪ Pn can be calculated by

including (adding) the sizes of all of the sets together, then excluding (sub-

tracting) the sizes of the intersections of all pairs of sets, then including the

sizes of the intersections of all triples, excluding the sizes of the intersections

of all quadruples, and so on until, finally, the size of the intersection of all

of the sets has been included or excluded, as appropriate. If n is odd it is

included, and if n is even it is excluded.

It is important to remember that all sets involved must be finite.

We should try to use PIE when we are trying to count something described

by a bunch of conditions, any number of which might hold at the same time.

Often PIE is used in conjunction with counting the complement. That is, you

use it to count the number of objects in the universe that you do not want,

and subtract this from the size of the universe (which needs to be finite). In

applying PIE, the setup is of great importance. You need to be clear about

what the sets are (what it means to belong to one or more of them), what

the universe is, and how the principle gives you what you want. Once you

have done this, things often reduce to more or less straightforward counting

problems.

Example 6.3. In a discrete mathematics class every student is a major in

computer science or mathematics, or both. The number of students hav-

ing computer science as a major (possibly along with mathematics) is 25;

the number of students having mathematics as a major (possibly along with

computer science) is 13; and the number of students majoring in both com-

puter science and mathematics is 8. How many students are in this class?

Solution: Let A be the set of students in the class majoring in com-

puter science and B be the set of students in the class majoring in math-

ematics. Then A ∩ B is the set of students in the class who are joint

mathematics and computer science majors. Because every student in the

class is majoring in either computer science or mathematics (or both), it
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follows that the number of students in the class is |A ∪ B|. Therefore,

|A ∪ B| = |A| + |B| − |A ∩ B| = 25 + 13 − 8 = 30. Therefore, there are

30 students in the class.

Example 6.4. How many positive integers not exceeding 1000 are divisible

by 7 or 11?

Solution: Let A be the set of positive integers not exceeding 1000 that are

divisible by 7, and let B be the set of positive integers not exceeding 1000

that are divisible by 11. Then A ∪ B is the set of integers not exceeding

1000 that are divisible by either 7 or 11, and A∩B is the set of integers not

exceeding 1000 that are divisible by both 7 and 11. We know that among

the positive integers not exceeding 1000 there are

⌊
1000

7

⌋
integers divisible

by 7 and

⌊
1000

11

⌋
divisible by 11. Because 7 and 11 are relatively prime, the

integers divisible by both 7 and 11 are those divisible by 7×11. Consequently,

there are

⌊
1000

11× 7

⌋
positive integers not exceeding 1000 that are divisible by

both 7 and 11. It follows that there are

|A ∪ B| = |A| + |B| − |A ∩ B| = 142 + 90 − 12 = 220 positive integers not

exceeding 1000 that are divisible by either 7 or 11.

Example 6.5. Suppose that there are 1807 students in first year at your

college. Of these, 453 are taking a course in computer science, 567 are taking

a course in mathematics, and 299 are taking courses in both computer science

and mathematics. How many are not taking a course either in computer

science or in mathematics?

Solution: To find the number of first year students who are not taking a

course in either mathematics or computer science, subtract the number that

are taking a course in either of these subjects from the total number of first

year students. Let A be the set of all first year students taking a course in

computer science, and let B be the set of all first year students taking a course
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in mathematics. It follows that |A| = 453, |B| = 567, and |A ∩ B| = 299.

The number of first year students taking a course in either computer science

or mathematics is |A ∪ B| = |A| + |B| − |A ∩ B| = 453 + 567 − 299 = 721.

Consequently, there are 1807 − 721 = 1086 first year students who are not

taking a course in computer science or mathematics.

Example 6.6. A total of 1232 students have taken a course in Spanish,

879 have taken a course in French, and 114 have taken a course in Russian.

Further, 103 have taken courses in both Spanish and French, 23 have taken

courses in both Spanish and Russian, and 14 have taken courses in both

French and Russian. If 2092 students have taken at least one of Spanish,

French, and Russian, how many students have taken a course in all three

languages?

Solution: Let S be the set of students who have taken a course in Spanish,

F the set of students who have taken a course in French, and R the set

of students who have taken a course in Russian. Then |S| = 1232, |F | =

879, |R| = 114, |S∩F | = 103, |S∩R| = 23, |F ∩R| = 14, and |S∪F ∪R| =
2092. When we insert these quantities into the equation |S ∪ F ∪ R| =

|S| + |F | + |R| − |S ∩ F | − |S ∩ R| − |F ∩ R| + |S ∩ F ∩ R| we obtain

2092 = 1232 + 879 + 114 − 103 − 23 − 14 + |S ∩ F ∩ R|. We now solve for

|S∩F ∩R|. We find that |S∩F ∩R| = 7. Therefore, there are seven students

who have taken courses in Spanish, French, and Russian.

Exercises

1. How many elements are in A1 ∪ A2 if there are 12 elements in A1, 18

elements in A2, and a) A1∩A2 = φ? b) |A1∩A2| = 1? c) |A1∩A2| = 6?

d) A1 ⊆ A2 ?

2. A survey of households in the United States reveals that 96 percent

have at least one television set, 98 percent have telephone service, and
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95 percent have telephone service and at least one television set. What

percentage of households in the United States have neither telephone

service nor a television set?

3. Find the number of elements in A1 ∪A2 ∪A3 if there are 100 elements

in each set and if

a) the sets are pairwise disjoint.

b) there are 50 common elements in each pair of sets and no elements

in all three sets.

c) there are 50 common elements in each pair of sets and 25 elements

in all three sets.

d) the sets are equal.

4. There are 2504 computer science students at a college. Of these, 1876

have taken a course in Java, 999 have taken a course in Linux, and 345

have taken a course in C. Further, 876 have taken courses in both Java

and Linux, 231 have taken courses in both Linux and C, and 290 have

taken courses in both Java and C. If 189 of these students have taken

courses in Linux, Java, and C, how many of these 2504 students have

not taken a course in any of these three programming languages?

5. How many students are enrolled in a course either in calculus, dis-

crete mathematics, data structures, or programming languages at a

college if there are 507, 292, 312, and 344 students in these courses,

respectively; 14 in both calculus and data structures; 213 in both cal-

culus and programming languages; 211 in both discrete mathematics

and data structures; 43 in both discrete mathematics and programming

languages; and no student may take calculus and discrete mathematics,

or data structures and programming languages, concurrently?
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Hints and Solutions:

1. a) 30 b) 29 c) 24 d) 18

2. 1 percent

3. a) 300 b) 150 c) 175 d) 100

4. 492

5. 974



Suggested Problems for Practicals

Propositional Logic

1. Let p and q be the propositions “The election is decided” and “The

votes have been counted,” respectively. Express each of these com-

pound propositions as an English sentence.

a) ¬p b) p ∨ q c) ¬p ∧ q d) ¬q ∨ (¬p ∧ q). [4]

2. Write each of these statements in the form “if p, then q” in English.

a) That you get the job implies that you had the best credentials.

b) It is necessary to have a valid password to log on to the server. [4]

3. Construct a truth table for each of these compound propositions.

a) ¬p→ (q → r) b) (¬p↔ ¬q)↔ (q ↔ r) [8]

4. Use De Morgan’s laws to find the negation of each of the following

statements.

a) Kapil will take a job in industry or go to university.

b) Yogesh knows algebra and calculus. [4]

5. Determine whether (¬p ∧ (p→ q))→ ¬q is a tautology. [4]

6. Show that (p→ q) ∨ (p→ r) and p→ (q ∨ r) are logically

equivalent. [8]



Predicates and Quantifiers

1. Determine the truth value of each of these statements if the domain

consists of all integers.

a) ∀n(n+ 1 > n) b) ∃n(2n = 3n)

c) ∃n(n = −n) d) ∀n(3n ≤ 4n). [4]

2. Express each of these statements using logical operators, predicates,

and quantifiers.

a) Some propositions are tautologies.

b) The negation of a contradiction is a tautology.

c) The disjunction of two contingencies can be a tautology.

d) The conjunction of two tautologies is a tautology. [4]

3. Find a counterexample, if possible, to these universally quantified state-

ments, where the domain for all variables consists of all integers.

a) ∀x(x2 ≥ x) b) ∀x(x > 0 ∨ x < 0)

c) ∀x(x = 1) d) ∀x(x2 6= x). [4]

4. Let Q(x, y) be the statement “x has sent an e-mail message to y,”

where the domain for both x and y consists of all students in your

class. Express each of these quantifications in English.

a) ∃x∃yQ(x, y) b) ∃x∀yQ(x, y)

c) ∀x∃yQ(x, y) d) ∃y∀xQ(x, y) [4]

5. Let S(x) be the predicate “x is a student,” F (x) the predicate “x is a

faculty member,” and A(x, y) the predicate “x has asked y a question,”

where the domain consists of all people associated with your college.

Use quantifiers to express each of these statements.

a) Messi has asked Professor Maradona a question.

b) Every student has asked Professor Muller a question.



c) Some student has not asked any faculty member a question.

d) There is a faculty member who has never been asked a question by

a student. [8]

6. Rewrite each of these statements so that negations appear only within

predicates (that is, so that no negation is outside a quantifier or an

expression involving logical connectives).

a) ¬∀x∀yP (x, y) b) ¬∀x(∃y∀zP (x, y, z) ∧ ∃z∀yP (x, y, z))

c) ¬∀y∀x(P (x, y) ∨Q(x, y)) d) ¬(∃x∃y¬P (x, y) ∧ ∀x∀yQ(x, y)) [4]

Rules of Inference and Methods of Proof

1. What rule of inference is used in each of these arguments?

a) Ankit is a mathematics major. Therefore, Ankit is either a mathe-

matics major or a computer science major.

b) Jerry is a mathematics major and a computer science major. There-

fore, Jerry is a mathematics major.

c) If it is rainy, then the pool will be closed. It is rainy. Therefore, the

pool is closed.

d) If it snows today, the university will close. The university is not

closed today. Therefore, it did not snow today. [8]

2. Use rules of inference to show that the hypotheses “Randy works hard,”

“If Randy works hard, then he is a dull boy,” and “If Randy is a dull

boy, then he will not get the job” imply the conclusion “Randy will not

get the job.” [4]

3. Using direct proof, prove that if m + n and n + p are even integers,

where m,n, and p are integers, then m+ p is even. [4]

4. Show that if n is an integer and n3 + 5 is odd, then n is even using

a) a proof by contrapositive b) a proof by contradiction. [8]



5. Prove that if n is a positive integer, then n is odd if and only if 5n+ 6

is odd. [4]

Basics of Counting

1. How many functions are there from the set {1, 2, . . . , n}, where n is a

positive integer, to the set {0, 1}
a) that are one-to-one?

b) that assign 0 to both 1 and n?

c) that assign 1 to exactly one of the positive integers less than n? [8]

2. A palindrome is a string whose reversal is identical to the string. How

many bit strings of length n are palindromes? [4]

3. In how many ways can a photographer at a wedding arrange six people

in a row, including the bride and groom, if

a) the bride must be next to the groom?

b) the bride is not next to the groom?

c) the bride is positioned somewhere to the left of the groom? [8]

4. Let S = {1, 2, 3, 4}.
a) List all the 2-permutations and 3-permutations of S.

b) List all the 2-combinations and 3-combinations of S. [8]

5. The English alphabet contains 21 consonants and five vowels. How

many strings of six lowercase letters of the English alphabet contain

a) exactly one vowel? b) exactly two vowels?

c) at least one vowel? d) at least two vowels? [4]

6. In how many ways can we form a committee of three from a set of 10

men and 8 women, such that our committee consists of at least one

women? [4]



Generalized Permutations and Combinations

1. How many strings with seven or more characters can be formed from

the letters in EVERGREEN? [4]

2. Suppose that a large family has 14 children, including 2 sets of identical

triplets, 3 sets of identical twins, and 2 individual children. How many

ways are there to seat these children in a row of chairs if the identical

triplets or twins cannot be distinguished from one another? [4]

3. How many solutions are there to the equation

x1 + x2 + x3 + x4 = 20, where xi, i = 1, 2, 3, 4 is a nonnegative integer

such that

a) x1, x2, x3, x4 ≥ 0? b) x1, x2, x3, x4 ≥ 1? [8]

4. How many solutions are there to the equation

x1 + x2 + x3 = 15, where xi, i = 1, 2, 3 is a nonnegative integer such

that x1 > 1, x2 > 2 and x3 > 3? [4]

5. How many ways are there to distribute five balls into three boxes if

each box must have at least one ball in it if

a) both the balls and boxes are labelled?

b) the balls are labelled, but the boxes are unlabelled?

c) the balls are unlabelled, but the boxes are labelled?

d) both the balls and boxes are unlabelled? [4]

The Inclusion Exclusion Principle

1. Find the number of positive integers not exceeding 100 that are either

odd or square of an integer. [4]

2. How many bit strings of length eight do not contain six consecutive

0′s? [4]



3. How many permutations of the 10 digits either begin with the 3 digits

987, contain the digits 45 in the fifth and sixth positions, or end with

the 3 digits 123? [8]

4. How many elements are in the union of four sets if the sets have

50, 60, 70, and 80 elements, respectively, each pair of the sets has 5

elements in common, each triple of the sets has 1 common element,

and no element is in all four sets? [8]
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