<mark>Satyaniiketan 's</mark>

Adv. M.N.Deshmukh Art's , Sci. and Commerce College Rajur, T.Y. B.Sc.Chemistry : Analytical Chemistry-1 (CBCS 2019 Pattern) SEMESTER-V (Frist Term) TEACHING PLAN 2022-2023

Sr.No.	MONTH	ТОРІС	LECTURE
1	JUNE 2022	Gravimetry Introduction to gravimetric analysis: Precipitation methods. The colloidal state, Supersaturation and precipitate formation: The purity of the precipitate. Co-precipitation Conditions of precipitation. Precipitation from homogeneous solution, Washing the precipitate: Ignition of the precipitate quantitative separations based upon precipitation methods: Fractional precipitiation, Organic precipitants (8-droxyquinoline, DMG. Cupferron, Nitron and Benzoin-alla oxime, Anthranilic acid), Application of Gravimetry: Determination of Al(III) by 8- hydroxyquoline Determination of calcium as oxalate Determination of potassium as potassium tetraphenylborate. Determination of phosplate as ammonium molybdophosphate, Numbericals	09 L
2	JULY 2022	Inorganic Qualitative Analysis Basic principle, common ion effect, solubility, solubility product, properation of original solution, classification of basic radical in groups, separations of basic radicals removal of interfering anions (phosphate and borate, detection of acid radicals	07 L
3	AUGUST 2022	Thermal methods of analysis General discussion, Thermogravimetry, Experimental factors affecting TG analysis, instruments for thermogravimetry, Applications: Thermogravimetric analysis of CaCO HO, CuSO, SHO, Differential Thermal Analysis: Introduction, instrumentation for DTA and DSC, experimental and instrumental factors, applications: DTA of copper sulphate pentahydrate, Purity of pharmaceutical by DSC	06 L
4	SEPTEMBER 2022	Parameters of instrumental analysis Techniques, Methods, Procedures and Protocols, Selecting an Analytical Method, Accuracy, Precision, Sensitivity. Selectivity, Robustness and Ruggedness, Scale of Operation, equipment, Time and Cost, Making the Final Choice, Developing the Procedure, Calibration and Standardization, Sampling, Validation, Protocols	04 L
5	OCTOBER 2022	UV-Visible Spectroscopy Introduction, Theory of spectrophotometry and colorimetry- Beer's law, Application of Beer's Law, Spectrophotometry Wavelength selection by prism and diffraction grating. Radiation Source, cells, data presentation, single-beam spectrophotometer, Double-beam spectrophotometers, Choice solvent, general procedure for colorimetric estimation, simultaneous analysis, Application Estimation of metal ions from aqueous solution: Boron in steel, Chromium in steel with	10 L

		diahan daraharida maranta ananaisin in watan Chlavida	
		diphenyl carbazide reagent, ammonia in water, Chloride,	
		Primary amine, Determination of phenol, spectrophotometric	
		titration (example Cu(II) with EDTA). Determination of pKa	
		value of indicator, Determination of composition of metal	
		complexes using Job's method of continuous variation and	
		mole ratio method	
6	NOVEMBER	Holiday	
	2022	(SEMESTER – VI Second Term)	
7	DECEMBER	Solvent extraction	08 L
	2022	Introduction to solvent extraction, organic phase, Partition the	
	-	theory of extraction (distribution coefficient, Distribution ratio,	
		solute remaining unextracted. Separation coefficient), Factors	
		favouring solvent extraction, Quantitative treatment to solvent	
		extraction equilibrium, lon association complexes, synergic	
		extraction equilibrium, for association complexes, synergic extraction, some extraction reagent specifically used for	
		inorganic ions (Acetylacetone, 8-Hydroxyquinoline,	
		Diphenylthiocarbazone, Sodium diethyldithiocarbamate,	
		Ammonium pyrrolidine dithiocarbamate), some practical	
		aspects. Applications: determination of copper as the	
		diethyldithiocarbamate complex. Determination of Fe(III) with	
		8-hydroxyquinoline, determination of nickel by synergistic	
		extraction. Solid phase extraction	
8	JAN-'23	Instrumental Methods of Chromatographic Analysis	04 L
		Principles of Chromatographic Separations, classification,	
		Theory of Column Efficiency in Chromatography, (theoretical	
		plate, rate theory of chromatography-the Van Deemter	
		equation, efficiency and particle size in HPLC, retention factor	02 L
		efficiency and resolution High Performance Liquid	
		Chromatography	
		Introduction, Types of liquid chromatography (liquid-solid,	
		liquid-liquid, bonded phases), Choice of mode of separation,	
		Equipment for HPLC: mobile phase, sample injection and	
		column design (mobile phase, optimization of mobile phase,	
		gradient	
9	FEB-'23	elution, solvent delivery and sample injection, sample injection	04 L
		system, the column (effect of column length and column	
		diameter), Choosing the Detector, Ultraviolet detector,	
		Luminescence detector, RI detector, electrochemical detector,	
		Column efficiency, HPLC chromatogram and its characteristics	06 L
		(retention time, peak height, peak area), method of	
		quantitative analysis by HPLC, Example: determination of	
		aspirin, phenacetin and caffeine in a mixture, numerica	
		Gas Chromatography	
		Introduction, Apparatus: A supply of carrier gas from a high-	
		pressure cylinder, Sample injection system and derivatization,	
		the column (Packed columns, Open tubular columns), the	
		detector (properties, hot wire detector or TCD, FID, ECD),	
		Quantitative analysis by GC (Area normalization method and	
		internal standard addition method), Elemental analysis	
		internal standard addition methody, Liemental analysis	

10	MAR-'23	Atomic Absorption Spectroscopy Introduction, Elementary theory, Instrumentation, flames, the nebulizer-burner system, non-flame techniques, (graphite furnace, cold vapour technique), resonance line sources, monochromator, detectors, interferences, chemical interferences, background correction methods, Atomic absorption spectrophotometers, Experimental preliminaries (calibration curve methods, standard addition method) Preparation of sample (wet ashing, fusion, Dry ashing, microwave dissolution, concentration procedures), Detection limits, Estimation of Ca and Mg in water.	08 L
11	APRIL-'23	Flame Emission Spectroscopy Introduction, emission spectra, flame emission spectroscopy, flame photometers Evaluation methods, calibration curve procedure, the standard addition technique. Applications: determination of alkali metals by flame photometry, determinations of trace elements in contaminated soil by AAS.	04 L

Sh

Salunke M.S. Department of Chemistry