Satyaniketan's

Adv. M. N. Deshmukh Arts, Science and Commerce College, Rajur. Tal. Akole. Dist. Ahmednagar. Department of Chemistry ANNUAL TEACHING PLANNING (Tentative) 2023-2024

Class- FYBSc Choice Based Credit System [CBCS]

Subject- CH-101: Physical Chemistry (2 credit , 36 L) CH-201: Inorganic Chemistry (2 credit , 36 L)

Month	Chapters	Periods
Semester - I		
	Ch-1) Chemical Equilibrium:	
	Introduction: Free Energy and equilibrium - Concept, Definition and	
July	significance	04
	The reaction Gibbs Energy,	
	Exergonic and endergonic reaction.	
	The perfect gas equilibrium,	
	The general case of equilibrium,	0.6
August	The relation between equilibrium constants,	06
	Molecular interpretation of equilibrium constant.	
	The response of equilibria to conditions- response to pressure,	
	response to temperature,	02
	Van't Haff equation, Value of K at different temperature,	
	Problems	
September	Ch-3) Ionic Equilibria	
	Strong, moderate and weak electrolytes,	
	Degree of ionization,	04
	Factors affecting degree of ionization,	
0.41	Ionization constant and ionic product of water.	0.4
October	Ionization of weak acids and bases,	04
	pH scale,	
	Common ion effect.	
November	Salt hydrolysis-calculation of hydrolysis constant,	
	Degree of hydrolysis and pH for different salts.	06
	Buffer solutions. Solubility and solubility product of sparingly	
	soluble salts	
	Applications of solubility product principle.	

December		
Semester - II		
	Ch-1) Atomic Structure Origin of Quantum	
	Mechanics:	
January	Why study quantum mechanics?	04
Januar y	Quantum mechanics arose out of interplay of experiments and	
	Theory Energy quantization-	
	i) Black body radiation	
	ii) The photoelectric effect	
	iii) Wave particle duality-	
	a) The particle character of electromagnetic radiation	
February	b) the wave character of particle,	04
	iv) diffraction by double slit	
	v) atomic spectra, Review of-Bohr's theory and its limitations,	
	Heisenberg Uncertainty principle.	
	Quantum mechanics:	
	Time independent Schrodinger equation and meaning of various	
	terms in it, Significance of ψ and ψ 2,	
March	Schrödinger equation for hydrogen atom.	04
	Radial and angular parts of the hydogenic wave functions (atomic	
	orbitals) and their variations for1s, 2s, 2p, 3s, 3p and 3d orbitals	
	(Only graphical representation).	
	Radial and angular nodes and their significance.	
	Radial distribution functions and the concept of the most probable	
April	distance with special reference to 1s and 2s atomic orbitals.	
	Significance of quantum numbers,	0.4
	orbital angular momentum and quantum numbers ml and ms. Shapes	04
	of s, p and d atomic orbitals, nodal planes.	
	Discovery of spin, spin quantum number (s) and magnetic spin	
	quantum number (ms)	

June

(Mr. R. C. Muthe)

Satyaniketan's Adv. M. N. Deshmukh Arts, Science and Commerce College, Rajur. Tal. Akole. Dist. Ahmednagar. Department of Chemistry ANNUAL TEACHING PLANNING (Tentative) 2023-2024

Class- SYBSc Choice Based Credit System [CBCS]

Subject- CH-301: Physical and Analytical Chemistry [Credit 2, 36 L] CH-401: Physical and Analytical Chemistry [Credit 2, 36 L]

Month	Chapters	Periods
	Semester - III	1
	Ch-1) Chemical Kinetics: [12 L]	
	> Introduction to kinetics,	
July	> The rates of chemical reactions	03
	> Definition of rates,	
	▶ Rate laws and rate constants,	
	 Reaction order and molecularity, 	
	> Determination of rate law,	
	 Factors affecting reaction rates, 	
	Integrated rate laws – zeroth-order reactions,	
August	➢ First-order reactions,	06
	Second-order reactions (with equal and unequal initial	
	Concentration of reactants),	
	➢ Half-life period,	
	 Methods for determination order of a reactions, 	
	 Arrhenius equation- temperature dependence of reaction rates, 	
	Interpretation of Arrhenius parameters,	
September	Reaction dynamics - collision theory and transition-state theory	06
	of bimolecular reactions,	
	Comparison of the two theories,	
	➢ Problems.	
	Ch-2) Surface Chemistry [6L]	
	Introduction to surface chemistry	
	 Some basic terms related to surface chemistry adsorption, 	0.5
October	 Adsorption materials, 	06
	 Factors affecting adsorption, 	
	 Characteristics of adsorption, 	
November	> Types of adsorption,	06

	 Classification of adsorption isotherms, 	
	 Langmuir adsorption isotherm, 	
	 Freundlich's adsorption isotherm, 	
	BET theory (only introduction),	
	Application of adsorption,	
	Problems.	
December		
	Semester - IV	
	Ch-1) Phase equilibrium [9L]	
	> Introduction	
January	Definitions of phase	06
	Components and degrees of freedom of a system	
	Stability of phases,	
	 Criteria of phase equilibrium m. 	
	Gibbs phase rule and its thermodynamic derivation,	
February	Phase diagrams of one- component systems- water	06
	 Carbon dioxide and sulphur systems 	
	Problems.	
	Ch-2) Ideal and real solutions [9L]	
	> Introduction	
	Chemical potential of liquids	0.0
March	 Ideal solutions, ideal dilute solutions 	06
	Raoult's and Henry's Law	
	 Liquid mixtures, 	
	Phase diagram of binary systems	
	 Liquids - vapour pressure diagrams 	
	 Temperature composition diagrams 	
April	 Lliquid-liquid phase diagrams 	06
	 Solubility of partially miscible liquids-critical solution 	
	temperature	
	 Effect of impurity on partially miscible liquids, Problems. 	

Inder

(Mr. R. C. Muthe)

Satyaniketan's

Adv. M. N. Deshmukh Arts, Science and Commerce College, Rajur. Tal. Akole. Dist. Ahmednagar. Department of Chemistry ANNUAL TEACHING PLANNING (Tentative) 2023-2024

Class- TYBSc Choice Based Credit System [CBCS]

Subject- CH-501: Physical Chemistry- I CH-511 (A) : Environmental Chemistry CH-601 : Physical Chemistry-II

Month	Chapters	Periods
	Semester – V	
D	SEC-I: CH-501: Physical Chemistry- I [Credit -2, 36 L]	1
		,
	Ch-1) Quantum Chemistry [10 L]	
	Introduction	
	de Broglie hypothesis	
	The Heisenberg's uncertainty principle	
	Quantisation of energy	
	> Operators	
July	 Schrodinger wave equation 	10
	Well behaved function	
	Particle in a one	
	Two and three-dimensional box (no derivation)	
	> Physical interpretation of the ψ and ψ 2	
	 Sketching of wave function and probability densities for 1D 	
	box	
	> Degeneracy	
	 Applications to conjugated systems 	
	 Zero-point energy and quantum tunnelling 	
	> Numerical	
August	Ch-3) Photochemistry [10 L]	10
	> Introduction	
	 Difference between thermal and photochemical processes 	
	Laws of photochemistry:	
	Grothus - Draper law	
	ii) Stark-Einstein law,	

	Quantum yield,	
	\triangleright	
	Reasons for high and low quantum yield	
	 Factors affecting Quantum yield 	10
	Experimental method for the determination of quantum yield	
	Types of photochemical reactions	
	Photosynthesis	
	> Photolysis	
September	Photocatalysis	
	Photosensitization	
	> Jablonski diagram depicting various processes occurring in the	
	excited state	
	> Qualitative description of fluorescence and phosphorescence	
	> Chemiluminescence	
	> Problems	
	CH-511 (A) : Environmental Chemistry	
	3. Analytical Techniques in water Analysis (10 L)	
	Water quality parameters and standards,	
	Domestic water quality parameters, surface water, sampling,	
	preservation,	
	Monitoring techniques and methodology (pH, conductance,	
Ostahara	DO, ammonia, nitrate and nitrite, Cl, F, CN, Sulfide, sulphate,	10
October	phosphate, total hardness, boron,	10
	Metals and metalloids- As, Cd, Cr, Cu, Fe, Pb, Mn, Hg	
	(Exclude polarographic and AAS methods),	
	COD, BOD, TOC, phenols, pesticides, surfactants, tannis and	
	lignins,	
	E. Coli, Case studies of water pollution.	
	4. Water pollution and treatment methods (10 L)	
	Water pollutants, Eutrophication,	
	Waste water treatment (domestic waste water,	
	 Aerobic treatment, anaerobic treatment, 	10
November	Upflow aerobic sludge bed, industrial waste water treatment,	10
	Drinking water supplies,	
	Trace elements in water,	
	Chemical speciation (Cu, Pb, Hg, As, Se, Cr)	
December		

Semester – IV		
DSEC-IV: CH-601 : Physical Chemistry-II [Credit -2, 36 L]		
	Ch-1) Electrochemical Cells [16 L]	
	 Electrochemical cells, 	
	Reversible and irreversible cells with examples,	
	> The e.m.f. of electrochemical cell and its measurement,	
	The Weston standard cell,	
	Reference electrodes:	
	> The primary reference electrode and Secondary reference	
	electrodes,	
	> The Nernst equation for E.M.F. of a cell.	
-	> Types of reversible electrodes,	
January	> The sign convention for electrode potentials,	10
	> Thermodynamics of reversible cells and reversible electrodes,	
	> E.M.F. and equilibrium constant of cell reaction,	
	 Electrochemical series, 	
	> Types of concentration cells,	
	 Liquid junction potential, 	
	➢ Salt bridge,	
	> Applications of emf measurements: 1. Determination of pH of	
	a solution by using hydrogen electrode,	
	 Quinhydrone electrode and glass electrodes. 	
	> 2.Potentiometric titrations:	
	 Acid-base titrations, 	
	➤ (ii) Redox titrations.	
	> (iii) Precipitation titration,	
	 Batteries: Primary and Secondary batteries, 	
February	 Applications for Secondary Batteries, 	06
_	► Fuel Cells:	
	> Types of fuel cells,	
	> Advantages,	
	 Disadvantages of fuels cells, 	
	Comparison of battery Vs fuel cell	
	2. Crystal structure [10 L]	
	> Types of Solids: Isotropy and Anisotropy,	
March	Laws of crystallography: Law of constancy of interfacial	10
	angles,	
	➤ Law of rational indices,	

	\checkmark	Law of crystal symmetry,	
	\triangleright	Weiss indices and Miller indices,	
	\triangleright	Crystal Structure: Parameters of the Unit Cells,	
	\triangleright	Cubic Unit Cells: Three Types of Cubic Unit Cells,	
	\triangleright	Calculation of Mass of the Unit Cell,	
	\triangleright	Methods of Crystal structure analysis:	
	\triangleright	The Laue method and Braggs method: Derivation of Bragg's	
		equation,	
	\triangleright	Determination of crystal structure of NaCl by Bragg's method,	
	\triangleright	X ray analysis of NaCl crystal system,	
	\triangleright	Calculation of d and λ for a crystal system,	
	\checkmark	Numerical.	
	3. Nuo	clear Chemistry [10L]	
	\triangleright	Radioactivity,	
	\triangleright	Types of Radiations, Properties of Radiations,	
	\triangleright	Detection and Measurement of Radioactivity: Cloud chamber,	
	\triangleright	Ionization Chamber,	
	\triangleright	Geiger-Muller Counter,	
	\triangleright	Scintillation Counter and Film Badges,	
	\succ	Nuclear structure, Classification of nuclides,	
	\succ	Types of Radioactive Decay,	
	\succ	The Group Displacement Law,	
April	\triangleright	Kinetics of Radioactive Decay,	10
	\triangleright	Half-life, average life,	
	\checkmark	Energy released in nuclear reaction,	
	\triangleright	Mass Defect,	
	\triangleright	Nuclear Binding Energy,	
	\checkmark	Some applications of radio-isotopes as tracers:	
	\checkmark	Chemical investigation – Esterification,	
	\succ	Friedel -Craft reaction,	
	\checkmark	Structural determination – Phosphorus pentachloride,	
	\checkmark	Age determination – use of tritium and C14 dating,	
	\succ	Problems	

Jine en

(Mr. R. C. Muthe)

Satyaniketan's

Adv. M. N. Deshmukh Arts, Science and Commerce College, Rajur. Tal. Akole. Dist. Ahmednagar.

Department of Chemistry

ANNUAL TEACHING PLANNING (Tentative) 2023-2024

Class- TYBSc Choice Based Credit System [CBCS]

Subject- Sem- V CH-505 Sem- VI CH-610B

Month	Chapters	Periods	
	Semester – V		
DS	DSEC-II: CH-505: Industrial Chemistry - I [Credit -2, 36 L]		
July	1. Modern Approach to Chemical Industry (6 L) Introduction, basic requirements of chemical industries, chemical production, unit process and unit operations, Quality control and quality assurance, process control, research and development, human resource, safety measures, classification of chemical reactions, batch and continuous process, Conversion, selectivity and yield, copy-right act, patent act, trademarks.	08	
August	 2 Manufacture of Basic Chemicals (7 L) a) Ammonia: Manufacture of ammonia by modified Haber-Bosch process, Physico-chemical principles involved and uses of ammonia. b) Nitric acid: Manufacture of nitric acid by Ostwald's process, Physico-chemical principles involved and uses of nitric acid. c) Sulphuric acid: Manufacture of sulphuric acid by contact process, Physico-chemical principles involved and uses of sulphuric acid. 	08	
September	 3. Sugar and Fermentation Industry (7 L) a. Sugar: Introduction, manufacture of cane sugar, extraction of juice, purification of juice, sulfitation and carbonation, evaporation, crystallization, separations of crystals, drying refining, grades, recovery of sugar from molasses, by-product of sugar industry, Reference No1: Page No.1208- 1218 b. Fermentation Industry: Introduction, importance, conditions favorable for fermentation processes, Alcohol beverages, Manufacture of beer, manufacture of sprit, manufacture of wines, manufacture of vinegar, manufacture of power alcohol, ethyl alcohol from molasses. 4. Soap and detergents (8 L) (a) Soap: Soap and Fatty Acids: Introduction, Chemistry, Manufacturing Technology, Raw Materials, Functional Properties of Soap, Manufacturing Processes, Saponification Reactor, 	08	

	Cooling, Soap Separator, Soap Extraction, Centrifugation,	
	Neutralization, Direct Neutralization, Carbonate Neutralization,	
	Partial Neutralizing with Soda Ash, Carbon Dioxide Separation,	
	Raw Material Dosing, Caustic Soda, Completion of Neutralizing	
	with Caustic Soda, Neutralization Soap Viscosity,	
	(b) Detergents: Synthetic Detergents: Introduction, Characteristic	
	Features of Surfactants, Raw Materials for Surfactant Production,	
October	intermediates for Surfactant Production, Anionic Surfactants, Non-	04
October	ionic Surfactants, Amphoteric Surfactants, Cationic Surfactants,	01
	Detergent Additives, Production of Synthetic Detergents, and	
	Washing action of soap and detergents.	
	5. Dyes and Pigments (8 L)	
	(a) Dyes: Introduction, qualities of good dye, Colour constituents	
	(Chromophore, auxochrome), classification of dyes according to	
	their application, Synthesis and uses of following dyes: Nitroso	
	dye-martius yellow, Azo dyes-Methyl orange and aniline yellow,	
	Triphenylmethane dye-Crystal violet, Phthalein dye -	
	Phenolphthalein, Xanthane-Fluorescein, Antha-quinnoe-Alizarin	
November	and Indigo dyes - Indigo.	10
	(b) Pigments: Introduction, classification and general properties of	
	pigments. Inorganic pigments:	
	i) Zinc oxide pigments (Fundamentals and properties, Raw	
	materials, Direct process (American process), Precipitation process)	
	ii) Iron oxide pigments (Fundamentals and properties, Production	
	of iron oxide pigment by precipitation process),	
December		
	Semester – VI	
	CH-610 (B) Introduction to Forensic Chemistry	
	1. History of Development of Forensic Science in India [10 L]	
	Functions of forensic science. Historical aspects of forensic science.	
January	Definitions and concepts in forensic science. Scope of forensic	10
	science. Need of forensic science. Basic principles of forensic science.	
	Frye case and Daubert standard.	
	Work nature of forensic science. Qualifications of forensic scientists.	
	Duties & Code of conduct for forensic scientists.	
F.L.	2 Later Justice to Newster Dense and Densh streets Schoteness	1.4
rebruary	2. Introduction to Narcouce Drugs and Psychotropic Substances	14
	[10 L] Definition of nerrotics drugs and neurohetronic substances. Prood	
	elessification Nercotics stimulants depressents and hallucinogens	
	General characteristics and common example of each classification	
	Natural synthetic and semi-synthetic parcotics drugs and psychotropic	
	substances. Designer drugs. Tolerance, addiction and withdrawal	
March	symptoms of narcotics drugs and nsychotronic substances	14
	Introduction to NDPS Act-1985 and awareness about Punishment for	
	Offences.	

	3. Analysis of Narcotics Drugs and Psychotropic Substances [16 L]	
	Crime scene search for narcotic drugs and psychotropic substances -	
	searching a suspect, searching a dwelling, searching a vehicle.	
	Clandestine drug laboratories. Collection and preservation of drug	
	evidence. Testing of narcotics drugs and psychotropic substances.	
April	Isolation techniques for purifying narcotics drugs and psychotropic	10
	substances – thin layer chromatography, gas-liquid chromatography	18
	and high performance liquid chromatography. Presumptive and	
	screening tests for narcotics drugs and psychotropic substances.	
	Microcrystalline testing of Drug Abuse and Illicit Trafficking.	
	Analysis of narcotics drugs and psychotropic substances in urine, and	
	antemortem blood & in postmortem blood. Dope tests.	

Inder

(Mr. R. C. Muthe)