Sponsored By BCUD,

Savitribai Phule Pune University, Pune,

National Conference
On
"Graph theory \& It's Applications" (NCGTA-2018)
JANUARKY 19-20, 2018

PROCEIDING

Index

| Sr. No. | \quad Title of Full Length Paper, Abstract and Author Name/s |
| :---: | :--- | :---: |\quad Page No.

Applications of Spectral Graph Theory

Mr. DipakVishwanath Dhokrate ${ }^{1} \&$ Mr. Deepak Damodhar Pathave ${ }^{2}$
${ }^{1}$ Asst.Prof. Department of Mathematics, Adv. M. N. Deshmukh Arts, Science \& Commerce College, Rajur, Tal-Akole Dist.- Ahmednagar,SavitribaiPhule Pune University, Pune (INDIA)
${ }^{2}$ Asst.Prof. Department of Mathematics, New Arts, Commerce and Science College, Parner, Dist. - Ahmednagar SavitribaiPhule Pune University, Pune (INDIA) dipakdhokrat3@gmail.com ${ }^{1}$ \&pathavedeepak@gmail.com ${ }^{2}$

Abstract

: There are numerous applications of mathematics, specifically spectral graph theory, within the sciences and many other fields. This paper is applications of spectral graph theory, including the fields of chemistry, biology, and graph colouring. Topics such as the isomers of alkanes, the importance of eigenvalues in protein structures, and the aid that the spectra of a graph provides when colouring a graph are covered, as well as others. The key definitions and properties of graph theory are introduced. Important aspects of graphs, such as the walks and the adjacency matrix are explored. In addition, bipartite graphs are discussed along with properties that apply strictly to bipartite graphs. The main focus is on the characteristic polynomial and the eigenvalues that it produces, because most of the applications involve specific eigenvalues. The maximum degree of the graph tells us the most carbon atoms attached to any given carbon atom within the structure. The Laplacian matrix and many of its properties are discussed at length, including the classical Matrix Tree Theorem and Cayley's Tree Theorem.

Introduction:

A graph $G=(V, E)$ is a pair of vertices V and a set of edges E, assumed finite i.e. $|V|=n$ and $|E|=m$. The set of edges may be empty. The degree of a vertex $v, \operatorname{deg}(v)$, is the number of edges incident on v. A graph is regular if all vertices have equal degrees. A graph is a complete graph if each pair of vertices is joined by an edge. In the example graph below,

the set of vertices is $V(G)=\{a, b, c, d\}$ while the set of edges is $E(G)=\{a b, a c, a d, b d, c d\}$. The graph is not complete because vertices c an b are not joined by an edge. $\operatorname{deg}(b)=2=\operatorname{deg}(c)$, $\operatorname{deg}(a)=3=\operatorname{deg}(d)$. Two vertices are adjacent if there is an edge that connects them. In Figure1 , vertices a and bare adjacent, while vertices band c are not.

A real world applications can be modeled using vertices and edges of a graph. Examples include electrical nodes and the wires that connect them, the stops and rails of a subway system and communication systems between cities.

The order of G is the cardinality of the vertex set $V(G)$. It is denote by $p(G)$ or p. The size of G is the cardinality of the edge set $E(G)$. It is denoted by $q(G)$ or q. A graph G can be denoted as a $G(p, q)$ graph.

A $v_{i} v_{j}$ walk in G is a finite sequence of adjacent vertices that begins at vertex v_{i} and ends at vertex v_{j}. In Figure-1, a walk from b to c would be $b d c$. The graph is connected if each pair of vertices in a graph is joined by a walk. The distance between any two vertices in a graph is the number of edges "traced" on the shortest walk between the two vertices. The distance from b to c is 2 . The diameter of the graph G is the maximum distance between all of the pairs of vertices of a graph. It is denoted by $\operatorname{diam}(G)$. In Figure-1, the distance between any two vertices is either 1 or 2 , making $\operatorname{diam}(G)=2$. The vertices and edges may have certain attributes such as colour or weight. When the edges are given direction we have a digraph or directed graph. Digraphs can be used to model road maps. The vertices represent landmarks, while the edges represent one-way or two-way streets.

Figure-2
An incidence matrix associated with a digraph G is a $q \times p$ matrix whose rows represent the edges and columns represent the vertices. If an edge k starts at vertex i and ends at vertex j, then row k of the incidence matrix will have +1 in its (k, i) element and -1 it its (k, j) element. All other elements are 0 .

Figure-3

A graph is called as multi-graph if two vertices are joined by more than one edge.

Figure-4
When a pair of vertices is not distinct, then there is a self-loop. A graph that admits multiple edges and loops is called a pseudograph. In the pseudograph below, edge aa is joining a pair of non-distinct vertices. Therefore, there is a self-loop at vertex a.

Figure-5
Graphs G and H are isomorphic if there is a vertex bijection $f: V(G) \rightarrow V(H)$ such that for all $u, v \in V(G), u$ and v adjacent in $G \leftrightarrow f(u)$ and $f(v)$ are adjacent in H.

Figure-6
Graphs G and H are isomorphic, because a vertex bijection between them is: $f(a)=2$,
$f(b)=3, f(c)=4$, and $f(d)=1$.
There is a great deal of importance and application to representing a graph in matrix form. One of the key ways to do this is through the adjacency matrix. The rows and columns of an adjacency matrix represent the vertices and the elements tell whether or not there is an edge between any two vertices. Given any element,

$$
a_{i j}=\left\{\begin{array}{c}
1 \text { if }_{i} \text { anda } a_{j} \text { areconnected } \\
0 \text { otherwise }
\end{array}\right.
$$

For example,

Note that the diagonal of an adjacency matrix of a graph contains only zeros because there are no self-loops. Remember that our graphs have no multiple edges or loops. This causes the trace of the adjacency matrix $\operatorname{tr}(\mathrm{A})$ is the sum of its main diagonal to be zero. Also, when A represents a graph, it is square, symmetric and all of the elements are non-negative. In other words, $a_{i j}=a_{i j}$.

Result-1: The number of walks of length / from v_{i} to v_{j} in G is the element in position (i, j) of the matrix A^{l}.

For example,

$$
A=\begin{gathered}
a \\
a \\
b \\
c \\
d
\end{gathered}\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

The number of walks from vertex b to vertex d of length 2 can be found by squaring matrix A .

$$
A^{2}=\begin{gathered}
a \\
a \\
b \\
c \\
d
\end{gathered}\left[\begin{array}{llll}
a & c & d \\
2 & 1 & 1 & 2 \\
1 & 3 & 2 & 1 \\
1 & 2 & 3 & 1 \\
2 & 1 & 1 & 2
\end{array}\right]
$$

Therefore if we look at element $(b, d)=$ element $(d, b)=1$. There isone walk from b to d of length 2 . That walk is $b c d$.

Result-2: The trace of A^{2} is twice the number of edges in the graph.

In our example in Figure 8, the trace of A^{2} is 10 and the number of edges is 5 .

Result-3: The trace of A^{3} is six times the number of triangles in the graph.

In our example in Figure 8,

$$
A^{3}=\left[\begin{array}{llll}
2 & 5 & 5 & 2 \\
4 & 4 & 5 & 5 \\
5 & 4 & 4 & 4 \\
2 & 5 & 5 & 2
\end{array}\right]
$$

The trace of A^{3} is 12 and the number of triangles in the figure is 2 .

The characteristic polynomial of a graph G of order n is the determinantdet $(A-\lambda I)$, where I is the $n \times n$ identity matrix and A is adjacency matrix of graph G. The general form of any characteristic polynomial is $\lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\cdots \ldots+c_{n}$.

Result-3: The coefficients of the characteristic polynomial that coincide with matrix A of a graph G have the following characteristics:
i) $c_{1}=0$
ii) $-c_{2}$ is the number of edges of G
iii) $-c_{3}$ is twice the number of triangles in G.

In our example in Figure 8, the characteristic polynomial is $\operatorname{det}(\boldsymbol{A}-\boldsymbol{\lambda} \boldsymbol{I})=\lambda^{4}-5 \boldsymbol{\lambda}^{2}-4 \lambda$
i) There is no λ^{3}, soc $c_{1}=0$
ii) The number of edges of G is 5 because $-c_{2}=5$
iii) The number of triangles in G is 2 because $-c_{3}=4$, so

The roots of a characteristic polynomial are called the eigenvalues. Setting thecharacteristic polynomial $\operatorname{det}(\boldsymbol{A}-\lambda I)=\lambda^{4}-5 \lambda^{2}-4 \lambda$ equal to zero and solving we get the eigenvalues $\{-1,-1,2\}$.

Result-4: The sum of the eigenvalues of a matrix equals its trace.

The algebraic multiplicity of an eigenvalue is the number of times that the valueoccurs as a root of the characteristic polynomial. The geometric multiplicity is the dimension of the eigenspace or the subspace spanned byall of the eigenvectors.

Result-5: If a matrix is real symmetric, then each eigenvalue of the graph relating tothat matrix is real.

Result-6: The geometric and algebraic multiplicities of each eigenvalue of a realsymmetric matrix are equal.

Result-7:The eigenvectors that correspond to the distinct eigenvalues areorthogonal.

Note that when uand vare two orthogonal eigenvectors of Aassociated with two distincteigenvalues λ and μ then the unit vectors $\frac{u}{\|u\|}$ and $\frac{v}{\|v\|}$ are orthonormal eigenvectors associated with λ and μ respectively.

Result-8: If a graph is connected, the largest eigenvalue has multiplicity of 1.

Spectral graph theory is a study of the relationship between the topological properties of a graph with the spectral (algebraic) properties of the matrices associated with the graph. The most common matrix that is studied within spectral graph theory is the adjacency matrix. Originally, spectral graph theory analyzed the adjacency matrix of a graph, especially its eigenvalues.

The spectrum of a graph G is the set of eigenvalues of G, together with their algebraic multiplicities, or the number of times that they occur.

Result-9: A graph with n vertices has n eigenvalues.

If a graph has k distinct eigenvalues $\lambda_{1}>\lambda_{2}>\cdots>\lambda_{k}$ with multiplicitiesm $\left(\lambda_{1}\right), m\left(\lambda_{2}\right)$, $\ldots, m\left(\lambda_{k}\right)$, then the spectrum of G is written

$$
\operatorname{Spec}(G)=\left(\begin{array}{ccccc}
\lambda_{1} & \lambda_{2} & & \ldots & \lambda_{k} \\
m\left(\lambda_{1}\right) & m\left(\lambda_{2}\right) & \ldots & & m\left(\lambda_{k}\right)
\end{array}\right) \text { where } \sum_{i=0}^{k} \lambda_{i}=n .
$$

For example,

$$
\left.\mathrm{A}=\begin{array}{c}
a \\
a \\
b \\
c
\end{array} \begin{array}{ccc}
a & c \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

The characteristic polynomial is $\lambda^{3}-3 \lambda-2$ with eigenvalues $\{-1,-1,2\}$. Our graph has two distinct eigenvalues: -1 and 2 , hence the spectrum of the graph G is given by

$$
\operatorname{Spec}(G)=\left(\begin{array}{cc}
-1 & 2 \\
2 & 1
\end{array}\right)
$$

A graph is connected if for everypair of vertices u and v, there is a walk from u to v. When we have a k-regular graph (all vertices have degree k), then $\lambda_{1}=k$. When we have a complete graph (all vertices are adjacent to one another) with n vertices, $\lambda_{1}=n-1$. If G is a connected graph then $\boldsymbol{\lambda}_{1}$ is less than or equal to the largest degree ofthe graph. Also, $\boldsymbol{\lambda}_{1}$ increases with graphs that contain vertices of higher degree. Inaddition, the degrees of the vertices adjacent to the vertex with the largest degree-affectvalue-of λ_{T}.

G

Figure-10
Both have 5 vertices. The degree of each vertex in G is $4 . I n$ other words, G is acomplete graph, so $\lambda_{1}(G)=4$. The second graph H is a path, the degrees of the verticesof H are 1 and 2 , much smaller than that of $G: \lambda_{1}(H)=3 \approx 1.732$.

A bipartite graph G is one whose vertex-set V can be partitioned into twosubsets U and W such that each edge of G has one endpoint in U and one in W. The pair U, W is called the bipartitionof G, and U and W are called the bipartition subsets.

Result-10:Agraph is bipartite if and only if it contains no odd cycles.
Result-11:If G is bipartite graph and λ is an eigenvalue then $-\lambda$ is also aneigenvalue.
Result-12:The spectrum of a bipartite graph is symmetric around 0 .
Result-13:If G is a bipartite graph then $c_{2 k-1}=0$ for $n \geq 1$.
A minimal polynomial of a graph G is the sonic polynomial $q(x)$ of smallest degree such that $q(G)=0$.

Result-14:The degree of the minimal polynomial is larger that the diameter.
Result-15:If a graph G has diameter d and has m distinct eigenvalues then $m>d+1$.
A complete graph is one in which every pair of vertices is joined by an edge. Acomplete graph with nvertices is denoted by K_{n}.

Result-16:The complete graph is the only connected graph with exactly two distincteigenvalues.

Result-17:The complete graph K_{p} is determined by its spectrum.
The Laplacian Lof a graph is the square matrix that corresponds to the vertices of a graph. The main diagonal of the matrix represents the degreeof the vertex while the other entries are as follows:

$$
\boldsymbol{A}_{i j}=\left\{\begin{aligned}
-1 & \text { if } v_{i} \text { and } v_{j} \text { are adjacent } \\
0 & \text { otherwise }
\end{aligned}\right.
$$

The Laplacian can also be derived from $D-A$, where D is the diagonal mattixwhroseteranes represent the degrees of the vertices and A is the adjacency matrix.

For example,

$\mathbf{L}=\begin{gathered}a \\ b \\ c \\ d\end{gathered}\left[\begin{array}{cccc}a & b & c & d \\ 2 & -1 & -1 & 0 \\ -1 & 2 & 0 & -1 \\ -1 & 0 & 2 & -1 \\ 0 & -1 & -1 & 2\end{array}\right]$

The Laplacian of a connected graph has eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$. Thea!gebraic connectivity is defined to be λ_{2}, the second smallest eigenvalue. The name is a result of its connection to the vertex connectivity and the edge connectivity of a graph.

The Laplacian concerns the number of spanning trees of a graph. The Matrix Tree Theorem is one of the most significant applications of the Laplacian and is usually contributed to Kirchhoff. It is discussed in the nextsection.

A positive semidefinite matrix is one that is Hermitian, and whose eigenvaluesare all non-negative. A Hermitian matrix is one which equals its conjugate transpose. This is usually written: $A^{H}=\overline{A^{T}}=A$.

The characteristic function is the function for which every subset N of X, has avalue of 1 at points of N, and 0 at points of $X-N$. In other words, it takes the value of 1 for numbers in the set and 0 for numbers not in the set.

Result-18:The smallest eigenvalue of L is 0 .
Result-19:The multiplicity of 0 as an eigenvalue of L is the number of connectedcomponents in the graph.

Result-20:The algebraic connectivity is positive if and only if the graph isconnected.

A tree isa connected graph that has no cycles.

A tree

Not a tree

Figure-12
A subgraph H of a graph G is a graph whose vertex and edge sets are subset of (G) and $E(G)$ in that order.Somesubgraphs of the tree above are

Figure-13

A subgraph H is said to span a graph G if $V(H)=V(G)$. A spanning tree of agraph is a spanning subgraph that is a tree. Given graph G below, graph H is a spanningtree of G.

G

H

Figure-14

Result-21(The Matrix Tree Theorem): Given a graph G, its adjacency matrix Aand its degree matrix C, the number of nonidentical spanning trees of G is equal to thevalue of any cofactor of the matrix $C-A$.

Result-22(Cayley's Tree Formula): The number of different trees on nlabeled vertices is n^{n-2}.

Chemical Applications:

A chemical tree is a tree where no vertex has a degree higher than 4. Chemicaltrees are molecular graphs representing constitutional isomers of alkanes. If there are nvertices, each chemical tree represents a particular isomer of $C_{n} H_{2 n+2}$. The first four aremethane, ethane, propane, and butane. After that, the alkanes are named based on Greeknumbers. For example, $\mathrm{C}_{5} \mathrm{H}_{12}$ is pentane. Compounds whose carbons are all linked in a row, like the two below, are called straight-chain alkanes. For example, if $n=1$, we have the graph in Figure15, which represents methane.
 = Hydrogen

Figure- 15 shows us butane, which is $C_{4} H_{10}$.

Figure-16 Butane
Compounds that have the same formula, but different structures, are calledisomers. When $C_{4} H_{10}$ is restructured as in Figure-17, we have isobutane or 2-Methylpropane. Butane and 2-Methylpropane are isomers.

Figure-17 Isobutane or 2-Methylpropane
Compounds with four carbons have 2 isomers, while those with five carbons have 3 isomers. The growth, however, is not linear. The chart below compares the number ofcarbons with the number of isomers.

Formula	Number of Isomers
$\mathrm{C}_{6} H_{14}$	5
$\mathrm{C}_{7} \mathrm{H}_{16}$	9
$\mathrm{C}_{8} \mathrm{H}_{18}$	18
$\mathrm{C}_{9} \mathrm{H}_{20}$	35
$\mathrm{C}_{10} \mathrm{H}_{22}$	75
$\mathrm{C}_{15} H_{32}$	4347

When a carbon has four carbons bonded to it, we have a quarternary carbon. An

Figure-18 2,2-Dimetylpropane
For simplicities sake, we will just draw the carbon atoms from this point on, withthe understanding that there are enough hydrogen atoms attached to each carbon to givethat carbon atom a degree of 4 .
Study was done on the eigenvalues of molecular graphs and in particular λ_{1} (thelargest eigenvalue of a graph). When the isomeric alkanes are ordered according to their λ_{1} values, regularity is observed.

Let Δ denote the maximum degree of a graph. The chemical trees that pertain tothe 18 isomeric octanes $C_{8} H_{18}$ follow a pattern with respect to their largest eigenvalue λ_{1}. The isomer with the smallest $\lambda_{1}(3.8478)$ value is the straight-chain octane in Figure-19,that has $\Delta=2$.

Figure-19
The next 10 isomers have various extensions of branching, but none possess aquaternary carbon atom. All of them have $\Delta=3$ and their λ_{1} 's are greater than that ofthe straight-chain graph in Figure 4-5, where $\Delta=2$ and less than the following seven, who have $\Delta=4$. They are shown below in Figure-20.

The $12^{\text {th }}$ through the $18^{\text {th }}$ octanes contain a quaternary carbon atom, they all have $\Delta=4$, and they have the largest λ_{1}. The largest one $\lambda_{1}=5.6458$ and is the last tree shown below in Figure-21.

Figure-21
This same regularity occurs with isomeric alkanes with n carbon atoms, discussedabove. The normal alkane with $\Delta=2$ has the smallest $\lambda 1$. All alkanes with $\Delta=3$ have $\lambda 1$ greater than the alkanes with $\Delta=2$, and smaller than any isomer with $\Delta=4$. We cantherefore draw theconclusion that Δ, which tells us whether or not there is a quaternary41carbon atom, is the main molecular structure descriptor affecting the value $\lambda 1$, the largestLaplacian eigenvalue of an alkane. It has been discovered that $\lambda 1$ can be bounded by

$$
\Delta+1<\lambda_{1}<\Delta+1+2 \sqrt{\Delta-1}
$$

Also, by using a linear combination of the lower and upper bounds, $\lambda 1$ can be estimatedby

$$
\lambda_{1} \approx \Delta+1+\gamma \Delta-1
$$

where γ depends on both nand Δ. For alkanes, it has been discovered through numericaltesting that $\gamma \approx 0.2$. It is possible to establish the alkane isomers with $\Delta=3$ or $\Delta=4$ that have theminimal λ_{1}. Give P_{n}, below, $T_{n}{ }^{m i n}$ is the tree that establishes the minimal λ_{1} for $\Delta=3$, and $Q_{n}{ }^{\min }$ is the tree that establishes the minimal λ_{1} for $\Delta=4$.

The structure trees that represent the maximal λ_{1} are more complex. The $T_{n}{ }^{m a x}$ and $Q_{n}{ }^{\text {max }}$ coincide with the chemical trees that have the same Δ and n, having maximal λ_{1} and minimal W, where W represents the Wiener topological index of alkanes andconforms to the formula $W=\lambda$. The exact characterizations of these trees are complex and will not be covered here.

References:

1. Md. Saidur Rahman, Basic Graph Theory, Bangladesh University of Engineering and Technology(BEUT), Dhaka, Bangladesh.
2. J. A. Bondy and U. S. R. Murty. Graph Theory, volume 244 of Graduate Texts in Mathematics, Springer, 1st edition, 2008.
3. D.B. West. Introduction to Graph Theory. Prentice Hall of India, 2005.
4. Gary Chartrand and Linda Lesniak Graphs and Digraphs, Chapman \& Hall, London, 1996.
5. Fan Chung, Spectral Graph Theory, American Mathematical Society, Providence RI, 1997.
6. Michael Doob, "Algebraic Graph Theory", Handbook of Graph Theory, Edited by Jonathan Gross and Jay Yellen. CRC Press, Boca Raton, FL, 2004.
7. Ivan Gutman, Dusica Vidovic, Dragan Stevanovic, Chemical Applications of the Laplacian Spectrum, J. Serb Chemical Society 67(6)407-413, February, 2002.
8. John McMurry, Organic Chemistry, 6th Edition. Thomson Learning, Inc, 2004.
9. Bojan Mohar Some Applications of Laplace Eigenvalues of Graphs, NATO ASI Seminar C 497, Kluwer, 1997.
10. Bojan Mohar The Laplacian Spectrum of Graphs, Graph Theory, Combinatorics, and applications, Vol 2, 1991 p 871-898.
11. Peter Oliver and Chehrzad Shakiban, Applied Linear Algebra, Pearson Prentice Hall, Upper Saddle River, NJ, 2006.
12. Jason Rosenhouse, Isoperimetric Numbers of Cayley Graphs Arising From Generalized Dihedral Groups, Kansas State University, November 19, 2002
13. Allen Schwenk Graph Theory and Linear Algebra Unpublished Lecture Notes, June1519, 1987.
14. Spectral Graph Theory Home Page, www.sgt. pep.ufrj.br, accessed March, 2008.
15. R.L. Graham, B.L. Rothschild, and J.H. Spencer. Ramsey Theory. Wiley Interscience in Dicrete Mathematics, 1980.
