## Complex Numbers

## Complex numbers

are numbers that consist of two parts - a real number and an imaginary number. Complex numbers are the building blocks of more intricate math, such as algebra. They can be applied to many aspects of real life, especially in electronics and electromagnetism.

These are all complex numbers: • $\mathbf{1}+\mathbf{I}, \bullet 2-6 i, \bullet-5.2 i$ (an imaginary number is a complex number with $\mathrm{a}=0$ )

- 4 (a real number is a complex number with $b=0$ )


## Definition of Modulus of a Complex Number:

The number of form $a+i b$ where $a$ and $b$ are real numbers $i=\sqrt{ }-1$ is called $a$ complex number.It is thus represented as

$$
\mathrm{z}=\mathrm{a}+\mathrm{ib} \text { or } \mathrm{z}=\mathrm{x}+\mathrm{i} \mathrm{y}
$$

Here a or x is called real part of z and is represented as $\operatorname{Re}(\mathrm{z})$.
similarly, $b$ or $y$ is called imaginary part of $z$ and is represented
as $\operatorname{Im}(\mathrm{z})$
The complex number is also represented as $\mathrm{z}=(\mathrm{a}, \mathrm{b}) \mathrm{OR} \mathrm{z}=(\mathrm{x}, \mathrm{y})$
Order of these number can not be changed. Thus (a,b) is not equal to ( $\mathrm{x}, \mathrm{y}$ ).
This means that two complex numbers can be equal only if their real and imaginary parts are equal.

* Modulus of a complex number $z=x+i y$, denoted by $\bmod (z)$ or $|z|$ or $|x+i y|$, is defined as
square root of $\left(a^{2}+b^{2}\right)$ or square root of $\left(x^{2}+y^{2}\right)$, it is always taken as positive root.
* Modulus of complex number plays important role in theory of complex variable.
* The complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign
For example, (if $a$ and $b$ are real, then) the complex conjugate of $\mathrm{a}+\mathrm{b} \mathrm{I}$, is $\mathrm{a}-\mathrm{bi}$


## Properties of complex numbers.

When $a, b$ are real numbers and $a+i b=0$ then

$$
\mathrm{a}=0, \mathrm{~b}=0
$$

* When $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are real numbers and $\mathrm{a}+\mathrm{ib}=\mathrm{c}+\mathrm{id}$ then $\mathrm{a}=\mathrm{c}$ and $\mathrm{b}=\mathrm{d}$.
* The sum of two conjugate complex numbers is real.
* The product of two conjugate complex numbers is real.
* When the sum of two complex numbers is real and the product of two complex numbers is also real then the complex numbers are conjugate to each other.


## ALGEBRA OF COMPLEX NUMBERS

Fundamental laws of algebra are obeyed by Complex numbers.
They obey most of the properties of real numbers.
Take two complex numbers, $\mathrm{z}_{1}=\mathrm{x}_{1}+\mathrm{y}_{1} \mathrm{i}$ and $\mathrm{z}_{2}=\mathrm{x}_{2}+\mathrm{y}_{2} \mathrm{i}$

## Addition:

We obtain:
$z_{1}+z_{2}=\left(x_{1}+y_{1} i\right)+\left(x_{2}+y_{2} i\right)=\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right) i$

## Subtraction:

$z_{1}-z_{2}=\left(x_{1}+y_{1} i\right)-\left(x_{2}+y_{2} i\right)=\left(x_{1}-x_{2}\right)+\left(y_{1}-y_{2}\right) i$

## Multiplication:

$z 1 z_{2}=\left(x_{1}+y_{1} i\right)\left(x_{2}+y_{2} i\right)=\left(x_{1} x_{2}-y_{1} y_{2}\right)+\left(y_{1} x_{2}+y_{2} x_{1}\right) i$
Division:

$$
\begin{aligned}
z 1 / z 2 & =\left(x_{1}+y_{1} i\right) /\left(x_{2}+y_{2} i\right)=\left(x_{1}+y_{1} i\right)\left(x_{2}-y_{2} i\right) /\left(x_{2}+y_{2} i\right)\left(x_{2}-y_{2}\right) i \\
& =\left(x_{1} x_{2}+y_{1} y_{2}\right) / x_{2}{ }^{2}+y_{2}{ }^{2}+\left(y_{1} x_{2}-x_{1} y_{2}\right) i / x_{2}{ }^{2}+y_{2}{ }^{2}
\end{aligned}
$$

## SOME OTHER PROPERTIES OF COMPLEX NUMBER

1.Commutativity of addition:

$$
z_{1}+z_{2}=z_{2}+z_{1}
$$

2. Commutativity of Multiplication:

$$
z_{1} z_{2}=z_{2} z_{1}
$$

3. Associativity of addition:

$$
\left(z_{1}+z_{2}\right)+z_{3}=z_{1}+\left(z_{2}+z_{3}\right)
$$

4.Associativity of Multiplication:

$$
\left(z_{1} z_{2}\right) z_{3}=z_{1}\left(z_{2} z_{3}\right)
$$

5.Distributivity of multiplication:

$$
\left(z_{1}+z_{2}\right) z_{3}=z_{1} z_{3}+z_{2} z_{3}
$$

6. Equality:

Two complex numbers are equal only when their real parts and imaginary parts are equal.

## Argand diagram is the graphical representation of complex number

## Argand Diagram

$i$ (imaginary axis)


## Modulus and Argument of Complex Numbers

Let a complex number be
$Z$ such that : $z=x+y i$ Imaginary
Axis


$$
|z|=\sqrt{x^{2}+y^{2}}
$$

The magnitude or modulus of $z$ denoted by $\mid z$ i is the distance from the origin to the point $(x, y)$.

The angle formed from the real axis and a line from the origin to $(x, y)$ is called the argument of $z$, with requirement that $0 \leq$ $\theta<2 \pi$.
modified for quadrant and so that it is between 0 and $2 \pi$

$$
\theta=\tan ^{-1}\left(\frac{y}{x}\right)
$$

## Addition and Subtraction of complex numbers using Argand Diagram.




## Multiplication and Division of complex numbers using Argand Diagram.

## Multiplication

## Division




## De Moivre's Theorem

* Statement-
$(\cos \theta+i \sin \theta)^{\mathrm{n}}=\cos (\mathrm{n} \theta)+\mathrm{i} \sin (\mathrm{n} \theta)$
Where n is a power
This theorem is useful to find the power and root of complex number.

Statement :

$$
(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)
$$

where $n$ is a power.

$$
\text { Now } \quad \begin{aligned}
(\cos \theta+i \sin \theta) & =e^{i \theta} \\
\therefore \quad(\cos \theta+i \sin \theta)^{n} & =\left(e^{i \theta}\right)\left(e^{i \theta}\right)\left(e^{i \theta}\right) \ldots n \text { times } \\
& =e^{i \theta+i \theta+i \theta+\ldots+n \text { terms }} \\
& =e^{i n \theta} \\
& =e^{i(n \theta)} \\
\therefore \quad(\cos \theta+i \sin \theta)^{n} & =\cos (n \theta)+i \sin (n \theta)
\end{aligned}
$$

Above equation represents De Moivre's theorem.

## FORMS OF COMPLEX NUMBER

## RECTANGULAR FORM

$Z=x+i y$ is complex number where
$x$ and $y$ are rectangular co-ordinates

## EXPONENTIAL FORM

## POLAR FORM

$Z=r e i \theta$
$Z=r(\cos \theta+i \sin \theta)$
Here $x=r \cos \theta, y=r \sin \theta$ and $x^{2}+y^{2}=r^{2}$

