

Adv. M. N. Deshmukh Arts, Science and Commerce

College Rajur

Department of Chemistry

FYBSc Sem- I

intorial to I **Chemistry Paper I (Physical Chemistry)**

Tutorial No-2

Date- 24/09/2019

Que-Solve the following

- 1) Calculate the hydrogen ion concentration of a solution whose pOH is 8.6.
- 2) The degree of ionization of 0.1 M monobasic weak acid is 0.130. Calculate the pH of solution and pK_a of monobasic weak acid.
- 3) A buffer solution containing 0.25 M acetic acid and 0.50 M sodium acetate. Calculate the pH of buffer solution, if ionization constant of acetic acid at room temperature is 1.82×10^{-5} .
- 4) Calculate the hydrolysis constant, degree of hydrolysis and pH of 0.001 M ammonium chloride at 25° C. (Given: Kb= 1.8 x 10^{-5} and ionic product of water at 25° C, Kw = 1.0 x 10^{-14})
- 5) Calculate ΔH^0 for the reaction $CO_{2(g)} + H_{2(g)} \longrightarrow CO_{(g)} + H_2O_{(g)}$ given the ΔH_{f}^{0} for CO_{2 (g)}, CO (g) and H₂O(g) are -393.5, -111.3 and -241.8 kJ mol⁻¹ respectively.
- 6) Calculate the heat of formation of HCl at 348 K from the following data: $\frac{1}{2}$ H_{2 (g)} + $\frac{1}{2}$ Cl_{2 (g)} \longrightarrow HCl (g). $\Delta H^{0}_{298} = 92300$ J
 - The mean heat capacities over this temperature range are H_{2 (g)}; $C_p = 28.53 \text{ JK}^{-1} \text{mol}^{-1}$ Cl_{2} (g); $C_{p} = 32.26 \text{ JK}^{-1} \text{mol}^{-1}$ HCl (g); $C_p = 28.49 \text{ JK}^{-1} \text{mol}^{-1}$