Norton's Thm:

- Norton's theorem is used for simplifying a network in terms of currents instead of voltages. According to this theorem, any complicated network can be replaced by equivalent circuit consisting of
 - (a) an ideal current source (I_N) of infinite internal resistance and
 - (b) a resistance (R_N) in parallel with it as shown in Fig. 1.24.

Fig. 1.23

Fig. 1.24: Norton's equivalent circuit

Statement : Any two-terminal linear network, containing sources of e.m.f. and resistances, can be replaced by an equivalent circuit consisting of constant current source (I_N) in parallel with a single resistance (R_N). The constant current is equal to the current which would pass in a short circuit placed between the terminals and R_N is the resistance between the terminals when all the sources in the network have been replaced by their internal resistances.

How to Nortonize a given circuit?

To understand how to Nortonize a given circuit, consider the following circuit shown in Fig. 1.29.

Fig. 1.29

The procedural steps for finding Norton's equivalent circuit are as under.

Step I : Disconnect the load resistor $R_L = 5~\Omega$ from the terminals A and B.

Step II: To find Norton's current, put a short across the terminals A and B. It results in shorting out 6 Ω resistor as shown in Fig. 1.30. Now the entire battery current flows through the short circuit.

Fig. 1.30

$$I_{SC} = \frac{10 \text{ volts}}{4 \Omega} = 2.5 \text{ A}$$

This current is also called Norton's current (IN).

$$I_N = 2.5 A$$

Step III: Remove the short from terminals A and B, so that they are again open. To find R_{eq} , remove the battery and replace it by its internal resistance (in this case it is zero). The equivalent resistance (R_{eq}) is also known as Norton's resistance R_N of the circuit viewed back from open terminals A and B as shown in Fig. 1.31.

Fig. 1.31

٠.

Or

$$R_N$$
 or $R_{eq} = \frac{4 \times 6}{4 + 6}$ (: $4 \Omega \parallel 6 \Omega$)
$$R_{eq} = 2.4 \Omega$$

$$R_N = 2.4 \Omega$$

The Norton's equivalent of the given circuit consists of a 2.5 A constant current source in parallel with a 2.4 Ω resistance. (Refer Fig. 1.32)

Fig. 1.32: Norton's equivalent circuit

Step IV: Load current I_L passing through $R_L = 5 \Omega$ can be obtained by using the proportional current formula.

Fig. 1.33

From Fig. 1.33, the current passing through R_L is

$$I_{L} = I_{N} \times \frac{R_{N}}{(R_{N} + R_{L})}$$

$$I_{L} = 2.5 \times \frac{2.4}{2.4 + 5}$$

$$I_{L} = 0.81 \text{ A}$$

Problems:1

(Ans.
$$V_{Th} = 18 \text{ V}, R_{Th} = 3 \Omega$$
)

Using Norton's theorem, calculate the current flowing through $12~\Omega$ resistor as shown in Fig. 1.75.

(Ans. $I_L = 1.54 A$)

Problems:2

Nortonize the following circuit and calculate current across 8 Ω resistor.

Fig. 1.76

(Ans. $I_N = 3.24 \text{ A}$, $R_N = 7.4 \Omega$, $I_L = 1.55 \text{ A}$)