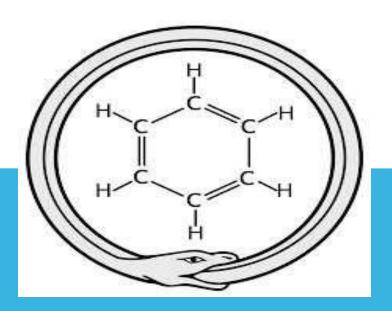


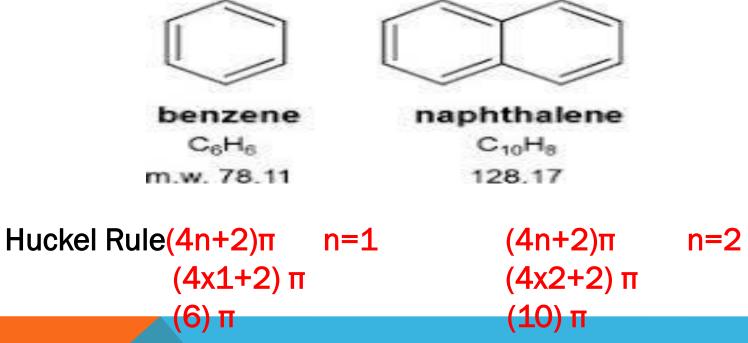
ADV.M.N.DESHMUKH ART'S SCIENCE AND COMMERCE COLLEGE RAJUR

DEPARTMENT OF CHEMISTRY SHRI M.S.SALUNKE


Discovery of Benzene

- The word "benzene" derives historically from "gum benzoin", sometimes called "benjamin" an aromatic resin known to European pharmacists and perfumers since the 15th century as a product of southeast Asia.
- Michael Faraday first isolated and identified benzene in 1825 from the oily residue derived from the production of illuminating gas, giving it the name bicarburet of hydrogen.

fall asleep while sitting in front of fire, dreamed about chains of atoms in form of twisting snakes. one of snake caught hold of its own tail, forming a whirling ring.


awoke, freshly inspired, spent remainder night working on his now-famous hypothesis.

CONDITIONS FOR AROMATICITY

□ Delo	ain essential for Aromaticity are: calisation: the molecule should contain a c cloud of delocalized πelectron above and w the plane of the molecule
ring orbi	arity: for the delocalisation of π-electron the must be planar to allow cyclic overlap of p-tals. Therefore, for a molecule to be aromatic ring must be planar.
□(4n·	-2)π electron: for Aromaticity, the π-electron
whe	d must contain a total of (4n+2)π electrons re n is an integer equal to 0,1,2,3n . This nown as Huckel Rule.

STRUCTURE OF BENZENE NAPHTHALENE

Both are aromatic compounds according to huckel rule

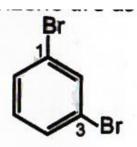
HISTORIC STRUCTURE OF BENZENE BY KEKULE

Dewar formula

$$CH_3-C \equiv C-C \equiv C-CH_3$$
(IV)

$$CH_3-C \equiv C-CH_3$$
(VI)

$$H_2C = C < C < CH_2$$


$$C < CH_2$$
(VIII)

$$CH = C - CH_2 - C = C - CH_3$$

$$(V)$$

$$H_2C$$

$$I \quad C = C = C = CH_3$$

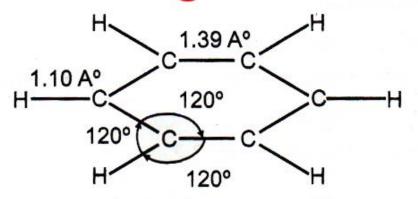
1, 2 - Dibromobenzene 1, 3 - Dibromobenzene 1, 4 - Dibromobenzene

Closer examination of structure

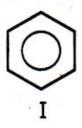
(I) shows that two structures are possible for 1, 2-dibromobenzene.

Further Kekule proposed that the structures (VI) and (VII) are in equilibrium and could not be separated.

HEAT OF HYDROGENATION HEAT OF COMBUSTION


Cyclohexene Cyclohexane
$$\Delta H = -120 \text{ kJ } (-28.6 \text{ kcal/mole})$$

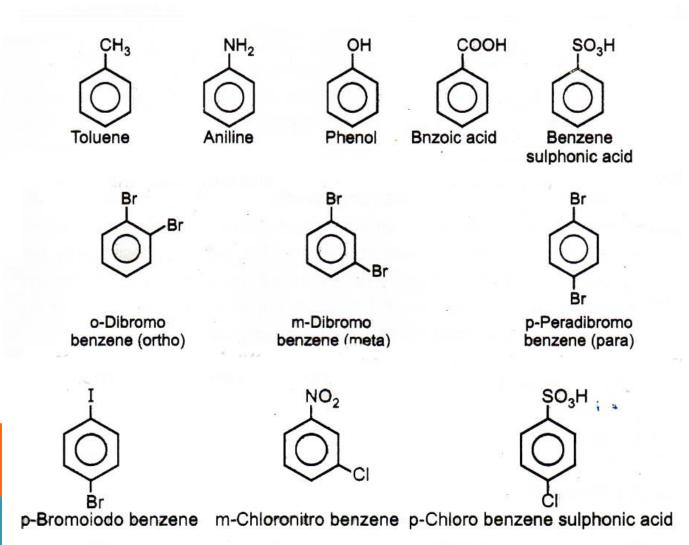
$$\Delta H = -232 \text{ kJ } (-55.6 \text{ kcal/mole})$$
Cyclohexadiene
$$\Delta H = -238 \text{ kJ } (-49.8 \text{ kcal/mole})$$


$$\Delta H = -208 \text{ kJ } (-49.8 \text{ kcal/mole})$$
Benzene

NEGATIVE HEAT HYDROGENATION = HEAT EVOLVED

C-C Bond length of benzene

Representation of Benzene Ring



and

IUPAC NOMENCLATURE OF BENZENE DERIVATIVES

PREPARATION OF BENZENE

From - Phenol

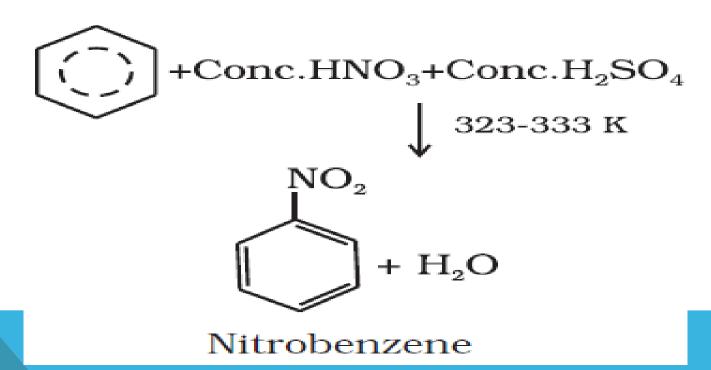
$$OH$$
 + Zn A + ZnO + ZnO Phenol Dust Reduction Benzene

By - Decarboxylation

COONa + NaOH
$$\frac{\text{CaO}}{\Delta}$$
 + Na₂CO₃

Sodium Benzoate

Benzene


PREPARATION OF BENZENE

From - Acetylene

From Benzene Sulphonic Acid

NITRATION

The replacement of a hydrogen atom in the ring by a nitro (-NO₂) group called nitration. It is carried out by heating benzene with the nitrating mix consisting of concentrated nitric acid and sulphuric acid

MECHANISM OF NITRATION

The accepted mechanism for this reaction involves following sequence of reactions:

(i) $HONO_2 + 2 H_2SO_4 \rightleftharpoons H_3O^+ + 2HSO_4^- + NO_2^+$ Nitronium ion

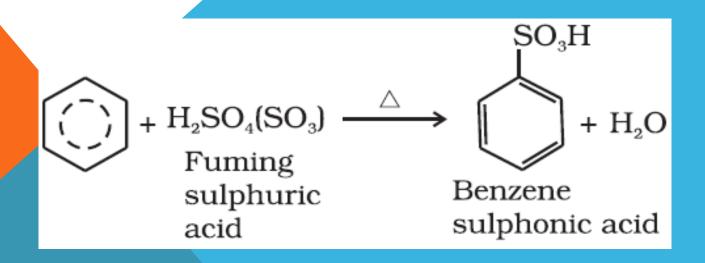
(ii)
$$NO_2^+ + C_6H_6 \rightleftharpoons C_6H_5$$
 slow step NO_2

(iii)
$$C_6H_5^+$$
 + HSO₄C₆H₅ \Longrightarrow NO₂ + H₂SO₄ fast step
NO₂

HALOGENATION

The replacement of a hydrogen atom in the ring by a halogen atom (F, Cl, Br or

I) is called halogenation. Arenes react with presence of a Lewis acid like anhydrous haloarenes.

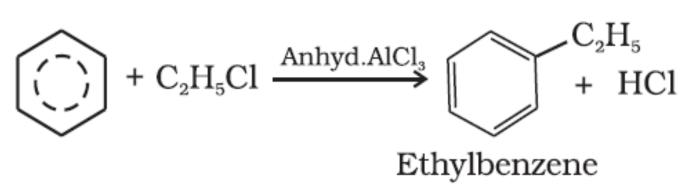

MECHANISM OF HALOGENATION

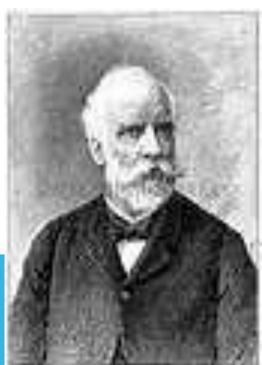
(i)
$$Cl_2 + FeCl_3 \longrightarrow Cl \longrightarrow Fe - Cl - Cl$$
(I)

(ii)
$$+ \frac{CI}{CI} = \frac{\Theta}{Fe} - \frac{\Theta}{CI} - CI = \frac{\Theta}{CI} + FeCI_4$$
 Slow step

SULPHONATION

The replacement of a hydrogen atom in the ring by a sulphonic acid (-SO₃H) group is called sulphonation. It is carried out by heating benzene with fuming sulphuric acid and oleum.


MECHANISM OF SULPHONATION


(i)
$$2 H_2 SO_4$$
 \longrightarrow $H_3 O^+ + HSO_4^- + SO_3$

FRIEDEL CRAFTS ALKYLATION

ALKYLATION:-

 When benzene is treated with an alkyl halide in the presence of anhydrous aluminium chloride, alkylbenene is formed

MECHANISM OF ACYLATION

(i)
$$R - C - CI \xrightarrow{AICI_3} R - C \oplus + AICI_4$$

Acid chloride Acylium ion

(ii)
$$R = C = O = C = R = AICI_3 = R = C = R = C = O = AICI_3$$
Anhydride Acylium ion

(iii)
$$R - C - OH + H_2SO_4 - R - C + H_2O$$
Acid Acylium ion

The reaction is as shown.

OXIDATION OF ALKYL BENZENE

(i)
$$\frac{\text{KMnO}_4}{\text{COOH}}$$

(ii) $\frac{\text{KMnO}_4}{\text{COOH}}$

(iii) $\frac{\text{KMnO}_4}{\text{COOH}}$

MECHANISM OF ALKYL BENZENE