SAVITRIBAI PHULE PUNE UNIVERSITY, PUNE T.Y.B.Sc. Botany (Sem-III) SUBJECT Genetics and Evolution(Paper-III) PowerPoint Presentation Topic-Interaction of gene Presented by Prof. V.B.Yelmame M. Sc. B.Ed

Adv.M.N.D. College Rajur

Non-epistatic genetic interaction

) COMPLEMENTRY GENE (9:7)

Certain character are the results of interaction between two or more pair of basic gene inherited from different parent. These gens if alone, remain unexpressed, and become effective only when they are combined in the same zygote through suitable crossing such gene are called the complementary gene. Because one completes the action of the other.

The interaction of complementary gene modifies the dihybrid ratio to 9:7 in the F_2 generation. e.g. Bateson crossed two varieties of a white sweet pea. All the plants of the F_1 generations possessed purple flower. When the F_1 individuals were self fertilized, they produce 9 purple and 7 white in F_2 generations.

Bateson explained these results by showing that it is really dihybrid cross in which two pair of complementary gene are involved and are inherited from opposite parent.

Bateson assumed that the purple color of the flower is due to two factor, a color factor 'C' and purple factor 'P'. Each of the whit parent lack one or the other gene and is of genotype CCpp or ccPP.

When such parents are crossed F_1 hybrid receives both the gene and are of genotype CcPp. Hence the flowers in the F_1 are purple. The F_2 ratio of 9:7 is actually modifications of dihybrid ratio is 9:3:3:1

Parent	Sweet Pe	a	Sweet Pea		
	White Flower	Х	White Flower		
	ССрр		CCPP		
Gametes ———	→ Cp		СР		
F1 Generation	→	🔪 СсРр 🗲			
		Purple flower			
Gametes	→ CP		Ср		

Checker Board

Ot	07	CP	Ср	сР	ср	
CP		CCPP Purple	CCPp Purple	CcPP Purple	CcPp Purple	9:7
Ср		CCPp Purple	CCpp White	CcPp Purple	Ccpp White	9 Purple
сP		CcPP Purple	CcPp Purple	ccPP White	ccPp White	7 White
ср		CcPp Purple	Ccpp White	ccPp White	ccpp White	

Non-epistatic genetic interaction

2) Duplicate Genes (15:1)

When two or more gene have the same effect o the given trait, they are referred as duplicate gene. The best example of interactions of duplicate genes has been reported by shull in 1914 in *Capsella bursa* and *Capsella pastoris* plant. There are two different varieties of this species, one variety bears triangular capsule fruit, while other bear ovoid shaped capsule. Both varieties breed true.

When they are crossed, the F_1 hybrid plant shows triangular fruit that means they indicating that the triangular capsule are dominance over the ovoid shaped ones.

Let us represents the genes responsible for triangular shape by T₁ and T₂. Since both genes contribute to the same effect that is triangular shape. The presence if even one dominant gene will make the fruit triangular. When only recessive genes are present in homozygous condition (t₁t₁t₂t₂) it form ovoid shaped fruit plant.

Thus dominant gene T_1 and T_2 have an identical effect on the fruit shape and are consequently termed as duplicate genes. The self pollination of F_1 triangular capsular fruit plant produce F_2 generation with triangular and ovoid capsular fruit plant in the ratio of 15:1.

Parent	Triangular		Х		Ovoid		
	$T_1T_1T_2T_2$					tıtıt ₂ t ₂	
Gametes	\rightarrow T ₁ T ₂					t1t2	
F1 Generation ———			T1†1T2†	2			
		Triangular Fruit					
F1 Gametes		T_1T_2 ,	T 1 † 2,	tıT2,	t1t2		
Checker Board							

	T1T2	T1†2	t1T2	t ₁ t ₂
T1T2	T1T1T2T2	T1T1T2 † 2	T1†1T2T2	T1†1T2†2
T1†2	T1T1T2 † 2	T1T1†2†2	T1†1T2†2	T1†1†2†2
t1T2	T1 † 1T2T2	T1†1T2†2	t1t1T2T2	tıtıT2t2
T1†2	T1†1T2†2	T1†1†2†2	tıtıT2t2	tıtıt2t2

15:1, 15 Triangular Fruit and 1 ovoid Fruit.

